SDSU

 

Math 121 - Calculus for Biology I
Spring Semester, 2009
Velocity and Tangent Lines

 © 1999, All Rights Reserved, SDSU & Joseph M. Mahaffy
San Diego State University -- This page last updated 14-Mar-09

Velocity and Tangent Lines

 

 

  1. Cats and Gravity
  2. Falling Ball Revisited
  3. Flight of a Ball under Gravity
  4. Tangent Line Interpretation
  5. Worked Examples
  6. Applet for Derivative as a Tangent Line
  7. Velocity of the Cat
  8. References

 

 

 

 

 

Cats and Gravity

 

 

 

 

 

 

 

 

 

 

h(t) = 16 - 16t2.

 

 

 

h(t) = 16 - 16t2 = 0,

which occurs when t = 1

 

 

 

 

Falling Ball Revisited

source for dropspeed4a
Alternate link

 

 

 

 

 

 

Flight of a Ball under Gravity
h(t) = 1960 t - 490 t2

 

 

 

Height of the Ball

 

 

 

Velocity of the Ball
h(t1)
h(t2)
ta = (t1+ t2)/2

Average Velocity
(h(t2) - h(t1))/( t2 - t1)

h(0) = 0
h(0.5) = 857.5
ta = (0 + .5)/2 = 0.25
v(0.25) = 1715
h(1.5) = 1837.5
h(2) = 1960
ta = 1.75
v(1.75) = 245
h(3) = 1470
h(3.5) = 857.5
ta = 3.25
v(3.25) = -1225

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v(t) = 1960 - 980 t

 

 

 

Tangent Line Interpretation

 

 

 

 

 

Example: Consider the function

y = x2

 

 

 

y = 3x - 2
y = 2.5x - 1.5
y = 2.1x - 1.1

 

 

 

 

 

General secant line for y = x2 at (1,1)
y = (2+h)x - (1+h)
y = 2x - 1

 

 

 

 

 

 

 

 

Applet for Interpreting the Derivative as the Slope of the Tangent Line

source for slope3c
Alternate link

 

Several points of particular interest

 

 

 

 

Velocity of the Cat

h(t) = 16 - 16t2.

 

 

 

v(1) = -32 ft/sec (or about 21.8 mph).

 

 

 

References:

[1] Jared M. Diamond (1988), Why cats have nine lives, Nature 332, pp 586-7.