SDSU

Math 121 - Calculus for Biology I
Spring Semester, 2009
Introduction to the Derivative

 © 2001, All Rights Reserved, SDSU & Joseph M. Mahaffy
San Diego State University -- This page last updated 14-Mar-09


 Introduction to the Derivative

  1. Introduction to the Derivative
  2. Derivative as a Growth Rate
    1. Juvenile Heights
    2. Yeast Population
  3. Derivative as a Velocity
    1. Trotting Horse
    2. Falling under Gravity
    3. Falling Ball
  4. Worked examples
  5. Reference

 

 

Introduction to the Derivative

 

 

 

 

 

The Derivative as a Growth Rate

Example 1: Juvenile Heights

 

 

 

 

 

 

where t0 and t1 are successive ages with heights  h(t0)  and h(t1)

Examples for girls,

Age (years) 

Height (cm) 

Annual Growth Rate (cm/yr) 

t0 = 2

h(t0) = 87

t1 = 3

h(t1) = 94

g(2) = (h(3) - h(2))/(3 - 2) = 7 cm/yr

Example for boys,

Age (years) 

Height (cm) 

Annual Growth Rate (cm/yr) 

t0 = 3/12 = 0.25 (3 months)

h(t0) = 61

t1 = 6/12 = 0.5 (6 months)

h(t1) = 68

g(0.25) = (h(0.5) - h(0.25))/(0.5-0.25) = 28 cm/yr

 

 

 

 

 

 

 

 

 

 

Example 2: Yeast Population

 

Time
Population
Time
Population
Time
Population
1
9.6
7
174.6
13
594.8
2
18.3
8
257.3
14
629.4
3
29.0
9
350.7
15
640.8
4
47.2
10
441.0
16
651.1
5
71.1
11
513.3
17
655.9
6
119.1
12
559.7
18
659.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Derivative as a Velocity

Example 3:Trotting Horse

 

 

Study of a trotting horse

 

 

Image 1, time = 0 sec 

Image 2, time = 0.04sec 

Image 3, t = 0.08 sec 

Image 4, t = 0.12 sec 

Image 5, t = 0.16 sec 

Image 6, t = 0.2 sec 

Image 7, t = 0.24sec 

Image 8, t = 0.28 sec 

Image 9, t = 0.32 sec 

Image 10, t = 0.36 sec 

 

 

Velocity

which is approximately the same

 

 

 

 

 

 

 

 

 

 

Example 4: Falling under the influence of Gravity

 

 

 

 

If we look once every 10 seconds, we see 

 

 

 

 

 

Consider 5 second intervals instead

 

 

 

 

Now consider 1 second intervals of time.

 

 

 

 

 

Example 5: Falling Ball

 

 

Change the time between strobe flashes by entering different values in the window. The left frame shows the position of the ball as it drops, while the right frame graphs the position as a function of time.

 

Alternate link

 

 

 

 

 

 

 

 

Worked Examples

 

 

References

[1] T. Carlson Über Geschwindigkeit und Grösse der Hefevermehrung in Würze. Biochem. Z. 57: 313-334, 1913.