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Certain biochemical reaction can be modeled by a coupled system of time- 
delayed ordinary differential equations and linear parabolic partial differential 
equations. In a three-compartment model these equations are coupled through the 
boundary conditions. The aim of this paper is to give a qualitive analysis of this 
unusual coupled system. The analysis includes the existence and uniqueness of a 
global solution, explicit upper and lower bounds of the solution. and global 
stability of a steady-state solution. The global stability result is with respect to any 
nonnegative initial perturbation and is independent of the time delays in the process 
of reaction. Special attention is given to the Goodwin model for biochemical con- 
trol of genes by a negative feedback mechanism with time delay and diffusion. 
0 1985 Academic Press, Inc. 

I. INTRODUCTION 

There have been numerous studies of mathematical models of 
biochemical systems in recent years. These models are formulated as a 
system of nonlinear differential equations and often contain either diffusion 
for spatial differences or time delays for certain biochemical processes. In 
this paper we study a model of three interacting compartments which 
includes a coupled system of differential equations with both time delay 
and diffusion. The model is motivated by Goodwin’s model for biochemical 
control of genes by a negative feedback mechanism. Goodwin’s model con- 
sists of a system of ordinary differential equations, however, he suggested 
that delays and spatial effects should be taken into account (cf. [3]). The 
first and third compartments are where the biochemical reactions occur. 
Each of these compartments is well mixed and has a differential delay 
equation governing the reactions of the chemical species. The second com- 
partment, connecting the first and third, is nonreacting except for decay of 
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the chemical species and accounts for spatial differences between the first 
and third compartments. The compartments are interconnected by per- 
meable membranes which we assume to obey Fick’s law of diffusion. With 
these assumptions the differential equations governing the chemical species, 
ui, ui in the ith compartment, i= 1, 2, 3, are given by (cf. [4]). 

(1.1) 

where u’, = du,/dt, (Us), = &Jar, etc. In the above equations, ui> 0 are the 
membrane permeabilities, hi and c0 are positive constants corresponding to 
the reaction rates, D, > 0 are diffusion coefficients, r, > 0 are the time delays 
and f is a prescribed function representing the controlled production of u1 
by u, . On the interface between compartments 1 and 2, and between com- 
partments 2 and 3 the concentrations u,, u, are related by the boundary 
condition 

(u,),(d t) + P2dL f) = &u,(t) 

- (Lb),-(0, t) + B:uz(o, 1) = 81*U,(l) 

(C’2)Jt 1) + BML t) = Ph(l) (t>o). 

(1.2) 

The initial condition for the system is given by 

u,(O)=511 o,(t)=q,(t) (-r,dtdO), 

%(X, 0) = 5*(x), c’z(x,O)=tlz(x) (O<x<O, (1.3) 

U&t) = S13(t), U,(O) = Y3 (-rz<t<O). 

In the boundary and initial conditions, fi,> 0, j,? >O, t1 30, q3 >O, 
i = 1,2, are constants and t2, t3, q,, yz are given continuous nonnegative 
functions of their respective arguments. The function f(u) in Eq. (1.1) is 
assumed to be continuous nonnegative on [0, co). Of special interest in our 
model is the function 

.fo(u)=fJ(l +I%-‘, (1.4) 

where CT and k are kinetic constants and p >, 1 is the order of repression (cf. 
[4, 91). A more detailed discussion of the three compartment model for- 
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mulation given by Eqs. (l.l)-(1.3) can be found in [4]. A novelty of this 
system for the mathematical analysis is that the coupling of the various 
concentrations is through the boundary conditions. 

The purpose of this paper is to give a qualitative analysis of the system 
( 1.1 ))( 1.3). As little is known about coupled system of reaction-diffusion 
equations with time delays, especially about systems with coupled boun- 
dary conditions, our immediate concern is to establish the existence and 
uniqueness of a global classical solution. The existence-uniqueness proof is 
based on the monotone method for coupled reaction-diffusion systems 
through the boundary and the construction of the associated upper-lower 
solutions (cf. [S]). This method also leads to a comparison theorem and 
explicit upper and lower bounds of the solution. In fact, through suitable 
construction of some upper and lower solutions we show that problem 
(1.1 )-( 1.3) has a unique nonnegative solution which is uniformly bounded 
on [0, I] x [0, co). After establishing the existence uniqueness theorem our 
next concern is the stability problem of a steady-state solution. The 
existence and uniqueness of a positive steady-state solution for the case 
f‘=& has been established in [4]. It is shown in this paper that for any 
function ,f satisfying 

f(u) 2 0, 0 6 -,f’(u) <h, b,/c, for u B 0, (1.5) 

where f’(u) = df/du, the corresponding steady-state solution of (1.1 t( 1.3) is 
globally asymptotically stable, independent of the time delays. Here the 
global asymptotic stability is with respect to nonnegative initial pertur- 
bations. This stability result is similar to the ones obtained by Allwright 
[ 1 ] and Banks and Mahaffy [2] for the Goodwm repression model with 
time delays only. 

2. MONOTONE SEQUENCES 

In this section we describe an iterative scheme for the construction of a 
monotone nondecreasing sequence and a monotone nonincreasing 
sequence, both of which converge to a unique solution of the problem 
(l.l)-(1.3). The monotone behavior of these sequences is based on the 
property of upper and lower solutions which are taken as the initial 
iterations. The definition of upper-lower solutions depends on the 
monotone property of the reaction function (cf. [S]). Motivated by 
Goodwin’s repression model where the reaction function f0 has the form 
given by (1.4) we assume 

(H) f(u)>0 andf’(u)dO foruB0 (2.1) 

In (H) note that f(v) is monotone nonincreasing in u. 
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Let D,= (0, T] x (0, I), D,= [IO, T] x [IO, 1-j and let (ui, oi) represent the 
vector (u,, ol, u2, u2, u3, v,), where T > 0 can be arbitrarily large. Define 
the differential operators 

and the boundary operators 

Hu,J(O) = -(~,La f) + B1 u,(O, t), 

BCu21(4 = (h).Y(L t) + Pzu,(L t), 

.N~21(0) = -(~2L(O, l) + PI*UZ(O> t), 

mu2x4 = (~A(~, f) + PM4 t). 

Then we can define the following upper-lower solutions. 

DEFINITION 2.1. Two vector functions (iii, 6,) and (,ui, ,o,) are called 
upper and lower solutions of (1.1 )-( 1.3), respectively, if they satisfy the dif- 
ferential inequalities 

the boundary inequalities 

(2.2) 

B[ii,l(O) - B, k(t) >, 0 3 N,u21(0) - P,,u1(tL 

EC&](l) - fl*i13(t) 2 0 3 B[p,l(l) - B*,u3(t), 

Nu”,l(O) - /v,(f) 2 0 2 ~[,v*l(O) - /m(t), 

ma,](l) - m,(c) 203 m2xo - Ph3(t) wo, TI) (2.3) 
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and the initial inequalities 

In the above definition the functions (iii, 6,) and (zL;, _ui) are required to 
be continuous in their respective domains and be once continuously dif- 
ferentiable in t and twice continuously differentiable in x for (t, x) ED,. In 
view of this definition every classical solution is an upper solution as well 
as a lower solution. Asf(v) is monotone nonincreasing in u the upper and 
lower solutions in (2.2) are related. The first inequality for an upper 
solution uses the function p,, and the second inequality for a lower solution 
uses the function 6,. 

Suppose upper and lower solutions (iii, Ci), (,ui, _ui) exist and (hi, Ci) 3 
(,ui,,vi) > (0,O). Then by starting from the initial iterations (UjO), $O’) = 
(ai, Ci) and (_ujO’, -v!~‘) = (, i, _ ,) u v we can construct two sequences { Ui”), t’,‘“‘}, 
{-u,‘“‘, _v,‘“‘} successively from the respective iteration processes: 

L, [iii”‘] = a,u:“-“(O, t)+f(v1”‘-~‘)(r-r,)), 

9, [up] = u, iq” ’ ‘(0, t ), 

L&q’] = 0 3 

21 [q’] = 0, 

Lj[U:““] = a,uy- “(I, t), 

X;[@‘] = a,z7~m?““(Z, t)+c,ii~--‘)(t-r2) 

and 

L,[_u’,rn’]=u,_U~~--“(O, t)+f(vy-“(t-r,)), 

9, [gj”‘] = a,$- “(0, t), 

L&4$“‘] = 0, 

222 [-u’“‘] = 0, 

L,[$‘] = a,& “(I, t), 

-12)[cyl;n’] = a,&- “(I, t) + c _u A 0 y-~“(t--J. 

(2.5) 

(2.6) 

The boundary and initial conditions for both sequences are given in the 
form 
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B[up](o) = p ,q-“(t), B[uy’](r) = p zUy”(t), 
Pi?[u:“‘](o) = p:uy l’(t), hqp](l) = p:uy- l’(t), (2.7) 

$v) = i” I > ul”“(t)=~,(t~ (tE[-r,,O], 

qYx> 0) = <2(x), qYx2 0) = %(X1 (x E au), (2.8) 

u:“‘(f) = r3(t), u:““(O) = y3 (fE L-r*, 01). 

It is clear that the sequences {II~~,, Vl”,}, {LA:“,, yj”,} are well defined and 
can be determined by solving a linear scalar initial-value or initial boun- 
dary-value problem. To determine (iii”‘,, ~j”‘,) or ($‘,, _uj”,), it is necessary 
to calculate both (ti!“-‘I, I?!“-‘,) and (_u!‘+,,, y!“p ‘1) since the first 
equation in (2.5) uses’g m \ --I, ‘while the equaiion in ‘(2.6) uses 17:” ~ I,. Our 
main concern is to determine whether these two sequences converge and 
whether their limits are solutions of (1.1 )-( 1.3). In the remainder of this 
section we establish the convergence property of the sequences. This is con- 
tained in 

LEMMA 2.1. Let (ii,, a,), (g,,;,) he upper and lower solutions with 
(iii, C,)> (,u,,_u()> (0,O) and let hypothesis (H) hold. Then the sequence 

1.7 monotone nonincreasing and {$“‘), ~f’~‘} is monotone non- 
g;*;;;y;,1: j$oreouer 

($- ” > Y; (m- 1’) < (gjm’, $f’) < (lip, zy’) 

< (,f,f,7 ’ I) fij,,l I’), m = 1, 2,... . (2.9) 

proqf: Let w~=~~~~-~~” = ~,-~~‘), ;,=,)“)-fi~l) = 6,-c]‘), 
i= 1, 2, 3. Then by (2.2) (2.4, (2.5), and (2.8) (MI,, 2,) satisfies the relation 

L,[~,l=L,Ciil]-[a,~~o’(0,t)+f(_v~o’(t-r,))]30, 

w,(0)=ii,(0)-(,>,O, 

~l[~,]=5?l[fi,]-a,f?~o’(0, t)>O, 

z](t)=a](t)-~](t)~o (te C-r,,ol). 

The above relation implies that (w, , 2,) >, (0,O) on [0, T]. Similarly, 
(w37 z3 ) satisfies 

L3[w3] = L3[C3] - a3ti~0’(1, t) > 0, 

w3(t) = 63(t) - 53(t) 2 0 (te C-r,, Olh 
L4[z3] = Y;[fi,] - a,$O)(l, t) - ~,ti~~‘(t - r2) >, 0, 

z,(O) = u13(0) - q3 3 0, 
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which ensures that (IV,, zx) L (0, 0) on [0, r]. By the same reasoning, 
( w2, z2) satisfies 

From the boundary relations (2.3) and (2.7) we deduce 

B[w,](o)=B[iiz](o)-B,u~o’(t)30, B[w,](l)= B[az](l)-&uy’(t)~o, 

~[z*](O) = B[v”,](O) - p:v’l”‘(t) 3 0, qz*](l) = B[iL](~) - /qUyyt) 3 0. 

It follows from these inequalities that (w,, z,)>, (0,O) on 6, (cf. [6,7]). 
This establishes the relation 

(Ujl’, tip, ,< (jp, p) (i= 1, 2, 3). 

A similar argument using relations (2.6)-(2.8) and the right-side 
inequalities in (2.2)-(2.4) shows that 

(u!O’ a!O’) < (ui”, up) 1 ) I (i = 1, 2, 3). 

NOW let w.=U!“-$‘I, zi=U~“-~{“. Then by (2.5) (2.6), and the non- 
increasing property off(u), 

Nw,l=a,(u~“‘(O, t)-Jp(O, t))+f(-ujO’(t-r,))-~(v~~‘(t-~,))>,O, 
2, [z,] = a,(v$“‘(O, lj -_v$O’(O, 1)) 3 0, 
LC%l = =%[z21 =o, 
LJw,]=a,(u~“‘(l, t)-_u$O’(l, t))>O, 
%[z,] = ~~(v:~‘(l, t) -_~$~‘(l, tj) + c,(u$O’(t - r2j --u\O’(t - r2)j 30. 

From the initial conditions, wi=zi=O at t=O (z,(t) =0 for TV C--T,, 0] 
and w,(t) = 0 for t E [ -r2, 01) and because (w,, z2) satisfies the boundary 
condition (2.7) we again conclude that (wi, zi) 2 (0,O) on D,. Hence 

(@!O’, p!O’) < (g!” 1 I , ) gj”) < (Qj”, vi”) 6 (up, $0’) I * 

Assume for some m > 1, 
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Then by (2.5), (2.6), the functions ~~=@+r)--@) and zi=@+r)-~~m) 
satisfy the respective relations 

L, CM’,] = a,(Lp(O, I)-&4 (mm”(O, t))+f(fi~)(t-r,))-f(P-l)(t-r,))>O 2 

-u,[z,]=a,($yO, t)-yy-(0, [))>O, 

JhC~*l = =%[zzI = 0, 

,4a3z3I=%(Yy’(l, f)-Yzrn ( -I’(/, t))+c,(_U~m’(t-r2)-~~~;“-1)(I-rY2))~0. 

Since wi and zi also satisfy the same initial and boundary conditions as for 
the case m = 1 we conclude that (w,, z,) >, (0,O). This proves the relation 
(&p, $“‘) < (@f ‘1, ,(*+ 1’ ). The same argument gives the conclusion 
(ii!“+ ‘), 6’” + 1’) < (up’, fit”)) and (y!m+l) , y~m+‘))<(U!m+l), Gim+l)). The 
result of the lemma follo& from the’induction principle. 

It is seen from Lemma 2.1 that the pointwise limits 

lim (_u!~) (4 - , ,Y, I-(_u,,Y,), m - r 

(2.10) 

exist and satisfy the relation 

(,UiT ,Vi) < (-Ui, -Vi) < (tsi, Vi) 6 (iii, D”j). (2.11) 

Letting m + co in (2.5) and (2.6), a standard regularity argument shows 
that both (Ui, 17;) and (gi,-v,) satisfy Eqs. (l.l)-(1.3) except with the first 
equation in (1.1) replaced, respectively, by 

(2.12) 

(cf. [S]). Hence (I&, Vi) and (-ui, -vi) are not necessarily solutions of 
(l.l)-(1.3) unless ~r(t)==p,(t) for every t>O. In the next section we show 
that U1 =yr and (Ui, Ui) is the unique solution of (l.l)-(1.3). 

3. EXISTENCE AND BOUNDEDNESS OF A SOLUTION 

To ensure the existence of a global solution to the system (1.1))( 1.3) we 
need to show that upper and lower solutions do exist and the limits (Ui, Vi) 
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and (_ui,ui) in (2.10) coincide. We first establish an existence theorem 
whenever upper-lower solutions exist. 

THEOREM 3.1. Let (zIi, a,), (,ui, ,v,) be upper and lower solutions with 
7:: a,) > (,ui, ,v,) 2 (0, 0) and let f satisfy hypothesis (H). Then the sequences 

ujm’, $“)j, {_ui*), yf”‘j obtained from (2.5)-(2.8) with (U(‘), Uj’)) = (izj, 17~) 
and (_uiO’, _v[O’) = (,ui, ,oij converge monotonically from above and below, 
respectively, to a unique solution (ui, v,) such that 

Proof. Since U3(t)=g3(t)=13(t) for ZE[-rY2,0] and ti,(t)=y,(t)= 
VI(t) forte C-r,, 0] it suffices to show that (U;, I?~)=(-u~,-u~) for (t, x)EB~. 
To achieve this we let w,=Ui--ui, zi=Vi-y,, i= 1,2, 3. Then 

L,Cw,l=a,w2(0, t)+f(P,(t--,))-ff(v,(t--,)), 

$pIz,l =a,z@, t), 

LZC%l = 0% Rw,l(O) = 01 w,(t), B[w, -J(l) = b* wJt), 

=wz*l = 0, scull = Pfzi(tL mzm = flz*z3(tjy (3.2) 

L3(w31 = a3w2(L 11, 

=%Cz31 =w2(4 t)+cow3(t--r,), 
w,(O) = w2(x, 0) = w3(0) = 0, Z](O) = z,(x, 0) = Zj(0) = 0. 

In terms of integral representation, (w,, zi) for i = 1, and i = 3 are given by 

w,(ljqre-21”-T) Ca,w2(0, ~)+f(-~~(~--,))-f(Zl,(t--,))l dz, 
0 

1 

I 
z,(t)=a, e -a2(r-r)~2(0, T) dT, 

0 

w,(t)=a, e 
s 

I 
-a3(r-‘)~2(1, z) dz, 

0 

(3.3) 

z,(t)=~‘e-“““-“[a~z~(~, t)+cow3(S--rr2)] dz, 
0 

where cl,=a,+b,, c~~=a,+b,, a3=a3+bl, a4=a3+b,. Let 

M*=max{S’(o);,v,~uv~~, tE[O, T]}, (3.4) 

and for each fixed t > 0 let Ijw(I, be the maximum norm of either w(r) on 
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[0, t] or w(z, x) on [0, t] x [0, I]. In view of yI(z - rl) =U,(z -rl) for 
t E [0, r1 J and ~~(5 - rz) =0 for 7 E [0, r2] we obtain from (3.3) 

(3.5) 

where A4 is a positive constant independent of t. 
To obtain an estimate for (w,, z2) we also use an integral representation 

in terms of the Green’s function G(x, t I [, r). For each fixed (5, z) ED, this 
function is governed by the equations 

t[G]=G,-DG,,+hG=c?(x-()6(&t) 

&‘W+ -GAO, [I<, ~)+ibW, [It> t)=O, 

&G](1)= GAL tli', ~)+flzG(L tit, T) =O, 
(3.6) 

G(x, t / 4, T) = 0 (r<z), 

where D, h, p^, , fl, are positive constants. Denote by G,, G, the Green’s 
function corresponding to L = Lz, B = B, and L = AC*, B = .4?‘, respectively. 
Then the integral representation for the solutions w2, z2 in (3.2) are given 
by 

~vz(-x, t)=j’ CP,G,(x> [IO, ~1 w,(~)+PzG,(x, tlL T) wdz)l & 0 
(3.7) 

zz(x> t) = j-’ CP1*GAx, f I f-4 ~1 z,(z) + P:G& tl L ~1 zJz)l dr 
0 

(e.g. see [8, p. 1993). To determine the Green’s function we write 

(3x2 f I 5, z)= r(x, t I 5,~) + Vx, t I 4>~), 

where f is the fundamental solution of the operator E in R’ and V is deter- 
mined from the usual initial boundary value problem 

L[V]=O, 

B[ V](O) = -&f](O), 

B[ V](l) = -B[f](l), 
(3.8) 

V(x,tI&t)=Ofort<t (x, ~)EDT. 
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The fundamental solution r is given explicitly by 

where H(t) is the Heaviside function. Clearly G = r+ V satisfies all the 
requirements in (3.6). Although r has a weak singular point at (r, z) the 
function V is a bounded smooth function in D, for any fixed (5, z). In view 
of (3.8), (3.9), 

IG(x,t15,t)l~(4~(t--))lD)-“2+M0 (f > r), (3.10) 

where M0 is an upper bound of V on D,. By applying the above estimate 
in (3.7) for G, and G, we have 

Iw,(x, t)l GM, Jok-r)- “‘+Mo)dz (Ilw,ll,+ IIwJ,) 

6cIvi2+~)wII,+ II~3/1,), 

IZ?k t)l dc,Vi2+ f)(llz,ll,+ Il~3ll,), 

(3.11) 

where c, is a positive constant independent of (t, x), 
Let IV= (wi, zi) and for each t > 0 define 

I wx, t)l = Iw,(t)l + b,(t)1 + IW,(X> t)l + ..’ + Iz,(t)l, 

I/W,= lIW,llr+ IlZ*/l,f ll~‘2IIr+ ‘.. + I/z3lI,. 
(3.12) 

Then by adding the inequalities in (3.5) and (3.11) we obtain 

for some positive constants c and CI~. Let t, be any constant such that 
c( 1 - e - WI + til’ + t, ) < 1. Since /I WII, is a nondecreasing function of t the 
above relation implies that 

IIW,G (1 -emmzO”+ tfj2+t,) (1 WIJ,, for all tE [0, t,]. 

By the choice of t, this relation can hold only when I/ WIJ 1, = 0. This leads 
to the conclusion (Ui, Vi) = (-ui, vi) on [0, Z] x [0, t,]. Since the constants c 
and cl0 are independent of t a continuation of the above argument shows 
that (Ui, Ui) = (-ui, pi) on DT. It also shows that (Ui, vi) is the unique 
solution of (l.l)-( 1.3). Finally, the monotone convergence of the sequences 
and the relation (3.1) follow from Lemma 2.1. This completes the proof of 
the theorem. 
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It is seen from Theorem 3.1 that the existence of a solution to (l.l)-( 1.3) 
is ensured if there is a suitable pair of upper and lower solutions. Since 
every solution is an upper solution as well as a lower solution, the existence 
of such a pair becomes both necessary and sufficient for the existence 
problem. To construct some explicit upper-lower solutions so that a global 
solution is guaranteed to exist we choose the constant functions (ii;, 5,) = 
(p,, p,?) and (,ui,_ui)= (O,O), where pi, p* are some positive constants 
satisfying 

P,>/L p,*> - r ,) i= 1, 2, 3. (3.13) 

The,constants c,, fj are the least upper bounds of the initial functions [,, 4, 
in their respective domain. In view of Definition 2.1, the pair (p,, p:) and 
(0, 0) fulfills the requirements in (2.2) if 

(4 + b2) P? - a3P: - COP3 3 0; 

choose 

p2=(1 +b,lh)P,> i-$=(1 +w,)P:. (3.14) 

Then from f(pT) > 0 the above inequalities hold when 

(1 +b,lu,)P,a(l +w%)P,+f(o)l~,~ 

(1+~2l~,)P::~(1+~*/~,)P:+(col~3)P3. 

(3.15) 

To fulfill the boundary requirements in (2.3), (p,, p,*) must also satisfy the 
relation 

BIPr-BlPI 2% b2P2-P2P3~“, 

B:Pz*-8:PT~@ BP: -leP: 30. 

By the choice of p2, pf in (3.14) it suffices to verify 

(l+b,la,)P,~P,, (l+b,laI)P:aP;. 

This relation together with (3.15) can be put in the form 

~+~,/~,~P,/P3~~~+~,/~3~/~~+~,/~,~+~f~~~/~~,+~,~P3~~ 

1 + b/a, 2 P,*/P: >, (1 + b,la,Ml + b2l4 + (cd(a3 + b2)Np3/p:). 

(3.16) 

(3.17) 
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Let pX be any large constant such that 

Then there exists p1 > 0 such that (p1/p3) satisfies the relation in (3.17). By 
taking pj sufficiently large, if necessary, the constants pi, i= 1, 2, 3, can be 
chosen to satisfy the initial inequalities in (3.13). With p3 fixed we then 
choose p: sufficiently large such that 

The above relation ensures that for some p: > 0 the second relation in 
(3.17) holds. With this choice of pi, p* for i= 1,3 and the relation (3.14) for 
i= 2 the functions (p,, pf) and (0, 0) satisfy all the requirements in 
(2.2))(2.4). In view of Theorem 3.1 we have the following global existence 
theorem. 

THEOREM 3.2. Let f satisfy hypothesis (H). Then there exist positive con- 
stants pi, p* such that a unique global solution (u,, vi) to the problem 
( 1 .l )-( 1.3) exists and s&i&s the relation 

(0, 0) < (u;, Vi) d (P;, P,*) (t > 0, x E [O, I]). (3.18) 

Moreover, the bound (p,, p:) can be determinedfrom (3.14) and (3.17). 

Since the function&(v) satisfies hypothesis (H) we immediately have the 
following result. 

COROLLARY. The probZem (l.l)-(1.3) with f=fo given by (1.4) has a 
unique bounded nonnegative solution (ui, v,) which satisfies the relation 
(3.18). 

4. GLOBAL ASYMPTOTIC STABILITY 

The existence-comparison theorem for the time-dependent problem 
(l.l)-( 1.3) can be used to investigate the stability property of a steady-state 
solution. In this section we give a sufficient condition for the global 
asymptotic stability of a steady-state solution. This global stability result is 
with respect to any nonnegative initial function and is independent of the 
time delays r, , r2. The existence and uniqueness problem of the steady-state 
has been discussed in [4]. 
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THEOREM 4.1. Let (u;, v;) be a nonnegative steady-state solution of (1.1 ), 
(1.2), and let f satisfy hypothesis (H). Zf, in addition, 

sup C-f’(ul)l <b,b,lco, 
c, 30 

(4.1) 

then for any nonnegative initial function ([,, q,), there exist positive constants 
M, E, independent of the time delays Y,, r2, such that the corresponding time- 
dependent solution (u,, vi) satisfies the relation 

124,(t)-uj <Me-“‘, [u,(t)-v;l <Me-“‘, i= 1, 3, 

lu,(t,x)--U;(x)1 <Me-“‘, lu,(t,x)--t’;(x)1 <Me-‘:’ (t>O,O<x<l). 
(4.2) 

Proof We apply Theorem 3.1 by constructing a suitable pair of upper 
and lower solutions in the form 

('i, E,) = t”‘; + P(l), u’: + 4(t))3 

(_u,t Vi) = cu: - P*(t), uI‘)- q*(t)), 

where P, q, P*, and q* are nonnegative functions to be determined. It is 
clear by taking p(O), q(O), p*(O), q*(O), sufficiently large, if necessary, the 
initial requirements in (2.4) are satisfied. The boundary inequalities (2.3) 
‘are also satisfied if 

~C~;l(O~+p,P-~,(~~;+P~~O~~~~~;l(O~-B,P*-~l(~.;-P*~, 

Nu”,l(l) + BZP - B2(4 + PI 3 0 2 N-$1(l) - i&P* -PA% - P*L 

~[u”2](0) + p;kq - p:(v; + q) 2 0 2 B’cv”21(0) - p:q* - B?(vj -q*), 

S?[v.;](l) + fl;q - 82*(uj + q) 3 0 2 B[u.$](l) - lj2*q* - p:(u; -q*). 

Since (u:, vy) satisfies boundary condition (1.2) all the above inequalities 
hold for any functions p, q, p*, q*. Hence it suffices to find suitable 
functions p, q, p*, and q* such that the differential inequalities (2.2) are 
satisfied. 

NOW (ii,, 17~) fulfills the left-side differential inequalities in (2.2) if 

~‘+(a,+b,)(us+p)-a,(u;(O)+p)-f(_o,(t-r,))~O, 

4’ + (a, + b&U; + 4) -al(W)) + q) b 0, 

P’ - D,(u;L, + b,(u”z + PI 20, 

4 -NV;),, + &to; + q) a 0, 

P’ + (a3 -t b,)($, + P) -ad%(l) + PI k 0, 

4 + (a3 + b,)(u; + q) - a,(u;(l) + q) - co(u; + p(t- rz)) 2 0, 
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where ,vi(t-rl)=v; -q*(t-rl). Since (ug, v;) satisfies Eq. (1.1) these 
inequalities are equivalent to 

P’+(~,+b,)P-~,P~f(_v,(t-~,))-f(v;), 

4’ + (a, + b,) q - a, 4 2 0, 

p’+b,paO, 

q’ + b,q 2 0, 

p’+(a,+b,)p-w>O, 

4’ + (~3 + bJ q - a,q 2 cop(t - ~2). 

In view of the relation 

If(g~(t-rl))-f(v;)l <M*(v.;--_v,(t-r,))=M*q*(t-r,) 

all the above inequalities hold whenever 

P’ + b,p a M*q*(t - r,), 

q’+bq>cop(t-rJ (t>O). 
(4.3 1 

Following the same reasoning as for (fii, i?;), the function (,ui, _vi) = (UT-~*, 
VT-~*) fulfills the right-side differential inequalities in (2.2) if (p*, q*) 
satisfies the relation 

(p*)’ + 6, p* 2 M*q(t - r, ), 

(q*)‘+b,q*>c,,p*(t-r,) (t > 0). 
(4.4) 

Choose 

p =pOeeEr, q = qOeeEf, p* = po*e-“‘, q* = qoc-&‘, 

where E >O is a constant to be determined. Then relations (4.3) (4.4) 
become 

(b, -~)p,>M*q,*e”“, (6, - ~1 q. 2 cOpOeEr2, 

(b, - &)~$a M*qOeEr’, (b, - E) q$ b c0p$eer2. 

By taking q. = q$, p. = p$ it suffices to find po, q. such that 

M*e”“/(b, -E) < PO/q0 < (6, - E)/c~~“‘~. 

The existence of such a pair of (po, qo) is possible whenever 

M*c,< (b, -c)(b2 -E) e-E(ri+r2). 
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In view of (4.1) the above relation is clearly satisfied by a sufficiently small 
E > 0. With this choice of E and suitably large pO, q0 (see Remark 4.1), the 
functions (LI: + p, vi +q) and (UT- p*, u: -q*) are upper and lower 
solutions. The result (5.2) follows from Theorem 3.1. 

Remurk 4.1. When p*(O), q*(O) are large the lower solution (,ui,_vi) 
may become negative and Theorem 3.1 is not directly applicable. To over- 
come this we define a modified function p off so that p(u) = f(u) for v > 0 
and p is nonnegative and nonincreasing for u < 0 (e.g., j’(o) =f(O) for all 
v < 0). It is easily seen from the proof of Theorem 3.1 that if the lower 
solution (pi, gi) is not nonnegative all the conclusions in the theorem 
remain true when 3 is replaced by j Clearly (u;- p*, v; - q*) is a lower 
solution of the modified problem (i.e., with f replaced by a. Since by 
Theorem 3.2 the solution of (1.1 )--( 1.3) is unique and nonnegative 
whenever the initial function is nonnegative we conclude that the solution 
of the modified problem must coincide with the solution of the original 
problem. This implies that the result in (4.2) remains true even if (u; - p*, 
of -q*) assumes negative values in its domain. 

It is seen from Theorem 4.1 that if f satisfies (H) and (4.1) the steady- 
state solution of ( 1.1 ), ( 1.2) is globally asymptotically stable. In the special 
case of ,f =,fo the maximum of ( -,f’(v)) occurs at t: = ((p - l)/k(p + 1))“~ 
and 

-.fTC)= &4p) -‘(p-])l -l~“(p+l)I+l” i 
;f;; ;, (4.5) 

In view of Theorem 4.1 we have 

COROLLARY. Let (u;, v;) he the nonnegative steady-state solution of ( 1.1) 
( 1.2) corresponding to f =,f,, where f0 is given by ( 1.4). Zf 

ok <h, h,jc, whenp= 1, 
ak’/cJp -‘(p- l)‘- “(‘(p + 1)’ +‘/‘1 <4h,h,/c, whenp> 1, (4.6) 

then (us, v;) is globally asymptotically stable with respect to nonnegative 
initial functions. 
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