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Basic techniques from biochemical kinetics are used to develop models for 
a cellular control system with linked positive and negative feedback. The 
models are represented by a system of nonlinear differential equations 
with delays. The lac operon provides an example of a control system where 
the transcription of the operon is controlled by induction or positive 
feedback control and catabolite repression or negative feedback control. 
These processes are linked through the metabolism of lactose. 

1. Introduction 

In this series of papers we shall develop and analyze mathematical models 
of induction linked with repression for prokaryotic cells. These models 
employ the hypotheses of Jacob & Monod (1961). Goodwin (1963, 1965) 
proposed mathematical models for induction and repression of the gene. 
He proposed that epigenetic oscillations in prokaryotic cells may arise from 
repression of the gene. The Goodwin models of repression have been studied 
extensively (Griffith, 1968a; Walter, 1971; Othmer, 1976; Tyson & 
Othmer, 1976; and Hastings, Tyson & Webster, 1977). Goodwin also 
proposed a model for induction. Studies of this mathematical model can 
be found in Griffith (1968b), Othmer (1976) and Tyson $r Othmer (1976). 
The induction models have not been shown to exhibit oscillatory behavior, 
however, the classical model for induction is the lac operon which was 
shown experimentally by Knorre (1969, 1973) to have at least damped 
oscillations in asynchronously grown cultures of E. coli. Goodwin (1965) 
suggested that delays and linked genes could be important for oscillatory 
behavior. The Goodwin models with delays have been studied by Allwright 
(1977), Hadeler & Tomiak (1977), MacDonald (1977), Banks & Mahaffy 
(1978a), an der Heiden (1979), and Mahaffy (1980). There have been 
several studies of multiple loops in biochemical control (see Fraser & Tiwari, 
1974; Mees & Rapp, 1978; Banks & Mahaffy, 19786). The study below 
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90 J. M. MAHAFFY 

is based on the experimental findings concerning the cellular control of the 
fat operon. 

When E. coli is given a lactose medium as its only carbon source, the 
cell is induced by a stereoisomer of lactose (allolactose) to produce large 
quantities of three specific enzymes. One is P-galactoside permease which 
is involved in the transport of lactose across the cell membrane. Another 
induced enzyme is /3-galactosidase which breaks down lactose into the two 
simple sugars, glucose and galactose. The third enzyme, /3-thiogalactoside 
acetyl transferase, has not been linked to the metabolism of lactose. This 
induction process results in a positive feedback to the lac operon. However, 
when the cell has adequate supplies of glucose (independent of the availabil- 
ity of. lactose) the lac operon does not produce the mRNA necessary to 
produce large quantities of the enzymes listed above. This process is not 
completely understood. It appears that glucose affects the lactose metabol- 
ism in three ways (Magasanik, 1970). It excludes the inducer from the cells 
that do not contain a high level of lac y gene controlled permease. It also 
represses /?-galactosidase strongly, but transiently. Finally, it works as a 
catabolite repressor by affecting levels of c-AMP. This last action is weak 
but permanent during balanced growth. In order for the lac operon to be 
transcribed c-AMP must be available together with CAP (catalytic activator 
protein). The glucose which is an endproduct of the metabolism of lactose 
acts as a catabolic repressor by affecting the production of c-AMP and 
hence indirectly it represses the lac operon. The above process is shown in 
Fig. 1. For more details of the biological processes see Beckwith & Zipser 
(1970) and Miller & Reznikoff (1978). 

In this paper we shall formulate mathematical models based on the 
biological information given above. To accomplish this the biochemical 
species given in Fig. 1 will be interrelated by a series of chemical equations 
which describe the biochemical reactions. These equations will then be 
transformed into a system of differential equations using some basic prin- 
ciples from chemical kinetics. Several standard ideas from enzyme kinetics 
and other known information about the system will be used to simplify the 
models. 

2. Biochemical Equations for the induction-Repression Model 

In this section a list of the biochemical reactions is considered for the 
development of the models with coupled induction and repression. The 
models will use the biochemical reactions that are known for the lac operon 
as an example of the coupled processes of induction and repression. We 
note that many of the complexities such as glucose’s having three different 
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negative feedback roles will not be taken into account. Some of these 
simplifications may prove to make the behavior of our model deviate from 
that of the wild type lac operon, however, we shall comment on what 
simplifications have been made and give explanations for our choice of 
reactions. 

To begin the discussion it is noted that CAP and c-AMP are needed to 
activate the lac operon. These chemical species apparently attach to the 
promoter region splitting the DNA and allowing the initiation complex to 
form. In the absence of an inducer compound such as allolactose there is 
a repressor protein bound to the lac operon which prevents the gene from 
transcribing. 

Hence the lac operon can be in one of four possible states. Let 0 represent 
the free lac operon. Let R represent the repressor protein then R * 0 and 
R * C * 0 are the bound inactive complexes formed when the repressor 
protein is bound to the Zac operon. Let C represent c-AMP (including the 
constitutive protein CAP), so C * 0 is the bound active complex which is 
ready for the process of transcription. Let NTP represent the nucleoside 
triphosphate needed to form the initiation complex C * 0 * NTP. We 
assume that once the initiation complex is formed the process of transcrip- 
tion proceeds at a steady rate to produce an mRNA. From the above 
information on the lac operon we formulate the following biochemical 
equations for our induction-repression model: 

R+O&R*O 
x-- 

(1) 

R+C*Oh R*C*O 
kkZ 

c+o + c*o (31 

C*O+NTP & C*O*NTp 2 mRNA+C* 0, 
k-4 

(4) 

where the ks are the rate constants for the equation determining the rates 
of formation and decay of the particular chemical species. These equations 
list the five possible states for the gene of which C * 0 is the only form 
allowing for transcription. 

The mRNA combines with a ribosome, initiation factors, and an 
aminoacyl-tRNA to form an initiation complex. After this a specific 
sequence of amino acids (AA) is added in the process known as translation 
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to form the enzymes listed above. Let EP be /3-galactoside permease and 
EG be P-galactosidase. A biochemical equation for the luc operon describ- 
ing this process can be written in the following manner: 

k 
AA+mRNA - -2L AA*mRNA -!k mRNA+EG+EP. (5) 

k-6 

As in the case of transcription, after initiation starts, the process is assumed 
to go to completion. Experimentally, there is strong evidence indicating 
that the proteins specified by the structural genes are not produced in 
equimolar rates (Zabin & Fowler, 1970). Note that both transcription and 
translation require a significant amount of time to form the completed 
product, hence these processes should include a delay term in the modeling. 
The translation in prokaryotic cells begins before transcription is completed, 
so the delay for transcription should be smaller than the delay for translation. 

For the induction-repression model we shall assume that the cell has a 
constant source of a substance LE which is complexed reversibly to the 
enzyme EP and irreversibly forms the substance LI which in turn will be 
changed into the inducer. The basis for our choice is a cell grown on a 
medium containing lactose as the only source of carbon. P-galactoside 
permease is involved in the transport of lactose from the exterior of the 
cell to the interior of the cell against a concentration gradient. The mem- 
brane reactions probably involve a complex series of reactions to accomplish 
this transport (see Kennedy, 1970: Kepes, 1971). These reactions are 
simplified to the bimolecular reaction between the permease EP and external 
lactose LE and given by the following chemical reactions: 

LE+EP & LE * EP k+9 
k-8 

- LI+EP, (6) 

where LI is the lactose inside the cell. The rate limiting step is the irreversible 
reaction. 

Inside the cell some of the lactose is enzymatically transformed into the 
natural inducer, allolactose (A). We shall assume that the amount of 
allolactose is proportional to the amount of LI. This assumption is an 
oversimplification as P-galactosidase is involved in the transformation of 
lactose to allolactose and furthermore the hydrolysis rates for lactose and 
allolactose are different (Huber, Wallenfels & Kurtz, 1975; Zabin & Fowler, 
1978). It is known that one to four molecules of allolactose combine 
reversibly with the repressor R to produce the inactive repressor-inducer 
complex I. Zubay & Lederman (1969) showed that optimum derepression 
is obtained by interaction of the “functional repressor” with two inducer 
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molecules. These reactions can be represented by the chemical equations 

Ll + A (7) 

and 
k 

pA+R & I, (8) 
k-1, 

where p is the number of molecules of allolactose combining with the 
repressor protein. 

We shall assume a rapid equilibrium in equation (7) which will effectively 
make LI into the inducer for the induction-repression model. This assump- 
tion makes the model fit the classical induction model of Jacob & Monod 
(1961). In the model we want to consider the negative feedback by the 
metabolic endproduct of the induced gene or catabolic repression. Again 
as an example the luc operon is controlled through negative feedback by 
the sugar, glucose (G). Glucose is an endproduct of the metabolism of 
lactose. As we have noted earlier glucose has a complex effect on the control 
of the lac operon. We shall only consider its action as a catabolite repressor. 
We shall assume that G is formed by the following bimolecular reaction: 

LI+EG + LI * EG k,‘L, EG+2G. (9) 

Note that although P-galactosidase breaks lactose into glucose and galactose, 
the galactose is readily transformed into glucose by another enzyme. This 
again is a simplification as there is probably a galactosyl-enzyme intermedi- 
ate (Huber, Kurtz & Wallenfels, 1976; Zabin & Fowler, 1978). 

Finally, the glucose or one of its catabolic products acts as a repressor 
or an inhibitor of the production of c-AMP. For this model we shall not 
consider the possibility that glucose accelerates c-AMP catabolism rather 
than inhibiting production. At this state we add an unknown substance (or 
possibly a series of substances) X. The unknown X could be an enzyme or 
an mRNA leading to the production of an enzyme used in the production 
of C. The following equation shows how X is used in the production of C. 

x+s * 
k 

x*s --Js x+c, (10) 

where S is a precursor to C. S is assumed to be in constant supply. We 
shall also assume that one or more molecules of G combine with X to form 
an inactive complex X * G. Let y be the number of molecules of G 
combining with X. The observed catabolite repression of glucose on the 
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production of c-AMP is given by the chemical equation 
k 

yG+X +Ih X*G. 
k-1, 

(11) 

In the model it will be necessary to account for loss of the various chemical 
species such as C, mRNA, G, EP, and EG by enzymatic degradation or 
dilution from cell growth. Various other compounds like NTP, AA, and R 
will be assumed to be in constant concentrations to simplify the model. 

3. Mathematical Model for the Induction-Repression Model 

In the previous section the biochemical equations were written for 24 
different chemical species. We shall use basic principles from chemical 
kinetics with appropriate simplifying assumptions to develop the mathemati- 
cal models. The mathematical models assume that the chemical species are 
in sufficient quantities such that a deterministic approach can be taken, i.e. 
differential equations can be used to model the concentrations of the 
chemical species. This approach has been used for the luc operon by Berg 
& Blomberg (1977). 

One standard simplifying assumption is that several of the compounds 
are maintained at constant concentrations by the cell. We shall assume that 
the species NTP, AA, LE, and S satisfy this assumption. We shall also 
assume that the total amount of the gene OT, the total amount of the 
repressor protein RT, and the total amount of the unknown substance XT 
are maintained at constant concentrations. Let [Z] denote the cellular 
concentration of the chemical species Z. The conservation of the genetic 
material is given by the equation 

OT=[O]+[R*O]+[R*C*O]+[C*C]+[C*O*NTP]. (12) 

Similarly the conservation of R T and XT is given by the following equations: 

RT=[R]+[R * O]+[R * C * O]+[I] 

XT=[X]+[X * S]+[X * G]. 
(13) 

As the operon is only one molecule per cell, it can be assumed that the 
repressor protein bound to the operon represents only a small fraction of 
the total repressor protein. This assumption implies that RT can be approxi- 
mated by the following equation: 

RT=[R]+[I]. (14) 

In fact there are about ten repressors per cell (Gilbert & Muller-Hill, 1970) 
which means this approximation could result in a 10% error. 
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As both EP and EG are transcribed from the same mRNA and if they 
are assumed to decay at a similar rate, we may assume that [EP] equals (or 
is proportional) to [EG]. P-galactosidase and /3-galactoside permease are 
stable enzymes which imply the main change in the concentrations is by 
dilution during cell growth. Using the law of mass action from chemical 
kinetics, we can write the following differential equations for the chemical 
species mRNA, EP, LI, G, and C: 

d[mRNA] 
dt 

= k+,[C * 0 * NTP] + (k-,+ k+,)[AA * mRNA] 

- k+6[AAl[mRNAl, (1.5) 

diPI - = k+,[AA * mRNA] + (k-, + k+,)[LE * EP] 
dt 

- k+,[LEIEPl, 

W-II -= k+JLE * EP]+ k-JAI+ kk,,[LI * EG] 
dt 

(16) 

- k+,WIEGl- k+,&Il, (171 

WI -= 2k,,dLI * EGl+ rtk-,,[X * Gl- k+dXIIGIY), 
dt 

(18) 

y= k+JX * S]+ kp3[C * O]- k+JC][O]. (19) 

Another assumption we can make is that the equilibria of equations 
(l)-(3), (7), (8), and (11) are achieved very rapidly. This assumption says 
that the change in formation of the complex is zero. Thus as an example 
from equation (1) we write 

d[R * 0] 

dt 
= k+,[R][O]-k-JR * O]=O. 

From this it is easily seen that 

[R * Ol= (k+,lk-,NRI[Ol. (20) 

Similarly from the equations (2), (3), (7), (8), and (11) the following 
algebraic equations can be formulated: 

[R * C * 0] = (k+J k_,)[R][C * 01, (21) 

[C * 01 = (k+J k-d[Cl[Ol, (22) 

[Al = (k+,olk-,dM, (23) 
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[II = (~+,,l~-,AIRIIAIP> (24) 

LX * Gl= (k+dk-,d[XIIGIY. (25) 

Another useful approximation made in enzyme kinetic problems is called 
the quasi-steady state approximation or the Briggs-Haldane modification 
of the Michaelis-Menten approximation. We shall apply this approximation 
to the equations (4)-(6), (9), and (10). This technique assumes the equili- 
brium complex in the above equations has achieved its steady-state. Using 
equation (4) as an example we can write 

d[C * 0 * NTP] 

dt 
= k+,[ C * O][NTP] - (k-4 + k+,)[C * 0 * NTPI = 0, 

resulting in the algebraic equation 

[C * 0 * NTP] = [k+,/ (k-, + k+,)][ C * O][NTP]. (26) 

Similarly the following algebraic equations can be written for equations (5), 
(6), (9), and (10): 

[AA * mRNA] = [ k+,/( k_, + k,,) J[AA][mRNA], (27) 

[LE * EPI = [k+d (k-8 + k+,)I[LEI[EPl, (28) 

ITI * =I = [k+d(k-,z+ k+,,)lLII[EGl> (29) 

LX * Sl= [k+d(k-w+ k+,,)l[Xl[Sl. (30) 

The induction-repression model can now be reduced to a system of five 
non-linear differential equations. In our model we shall assume there is a 
linear decay of the compounds mRNA, C, G, and EP. Combining equations 
(19) and (22) with a linear decay term of the form b,[C], we obtain the 
following: 

4Cl -= k+,,[X * S]-b,[C]. 
dt 

(31) 

Combining equations (15) and (27) with a linear decay term of the form 
&[mRNA], we obtain the following: 

d[mRNA] 

dt 
= k+5[ C * 0 * NTP] - b,[mRNA]. (32) 

With a linear decay term of the form 6,[EP] and the equations (27) and 
(281, equations (16) can be written as follows: 

WPI - = a3[mRNA] - b,[EP], 
dt (33) 
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where a3 = k+,k+,[AA]/(k-,+ k+,). Using equations (23), (28), and (29), 
we may write equation (17) as follows: 

WJI - = a,[EP]- b,[LI][EG], 
dt 

(34) 

where u4= k+,k+,[LE]/(k_,+ k,,) and b4 = k+12k+13/(k+12+ kk13). With a 
linear decay term of the form b,[G] and the equations (25) and (29), 
equation (18) can be written in the following manner: 

y = a,[LI][EG]- b,[G], (3.5) 

where a5 = 26,. 
From equation (13) with equations (25) and (30) an easy rearrangement 

of terms gives 

[xl=X~I(l+~,,[Sl+K,,[GIY), (36) 

where K14 = k+,,/( ke14 + k+J and Ki6 = k+16/ kk16. Using the assumption 
that [S] is a constant along with equations (30) and (36), we can simplify 
equation (31) to the following non-linear differential equation: 

(37) 

where ai= k+,,KS(XT)/(l+KS), KS=Ki4[S], and K1= k+16/{kp,6(1 + 
KS)). 

Equation (14) with equations (23) and (24) can be solved for [R] to give 

[RI = RTI(1 +K,,LIIP), (38) 

where K10 = (k+l,/k-ll)(k+lo/k-l~)~. With equations (21), (22), and (26). 
equation ( 12) implies 

OT=[O]+Kl[R][C]+K2[R][C][O]+KN[C][O], 

where Kl=(k+,/k-,), K2=(k+,k+,/k-,k-,), and KN={(k+,/k_,)+ 
( kt3 k+,[NTP]/ ( ke3( k-, + k+J)}. Using equation (38) and solving for [ 01, 
we see that 

OT( 1 + K,,[LIIP) 
[01=(l+KN[C])(1+K,,[LI]P)+(K1+K2[C])RT’ 

Using the above information with equations (22) and (26), we can simplify 



CELLULAR CONTROL. I. THE MODELS 99 

equation (32) to 

d[mRNAl= AdCI(l +~~[JW) 
dt (l+KN[C])(l+K,~[LI]P)+(Kl+K2[C])RT 

- &[mRNA], (39) 

where A2 = ( k+3k+4k+5[NTP]OT/( kp3( k-,+ k,,))). 
From the above information we can now formulate a mathematical model 

for the lac operon. Let x1 =[C], x2 = [mRNA], xj = [EP] (=[EG] by 
assumption), x4 = [LI], and x5 = [G]. In this model there are various delays 
to be taken into account. Let rl represent the delay caused by the various 
reactions needed for glucose to repress the production of c-AMP. Let r2 
be the amount of time required to transcribe the lac operon. Let r3 be the 
amount of time needed for translation of the mRNA produced from the 
above transcription. Finally, we represent the time for transporting lactose 
across the cellular membrane by the delay r,. Let i =dx/dt. Using this 
notation in the equations (33)-(35), (37) and (39), we can write the 
following system of delay differential equations: 

i,(t) = 
(I+K,(x~;t-r,))‘)-b’xl(‘)~ 

i2( t) = a2xl(t-r2)(l +K2(x4(t-r2)Y) 
(1+K,xl(t-r2))(l+K4(x4(t-r,))P)+KS-bZX2(~)~ 

(40b) 

k,(t) = a+2(t- d - b3(t), (4Oc) 

i4(f) = a4x3(t- r4) - b4Xj(t)X4(t), (404 

G(t) = a5x3(tb4(t)- k5(& (40e) 

where a2, KZ, KS, K, and K5 are constants appropriately scaled from 
equation (39). Note that KS may be non-positive. 

4. Modifications of the Mathematical Model 

The system of differential delay equations given by equations (40) is 
highly non-linear. There are a couple of assumptions that can lead to a 
simplification of the system. The models we shall list below are based on 
the model given by equations (40). The assumptions used may not 
necessarily be well founded for our example, the lac operon, but their use 
allows a more thorough mathematical analysis than would be possible for 
equations (40). In turn this information helps our understanding of the 
system of equations given by equations (40). 
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The first assumption is to remove the non-linearities in equations (40a) 
and (40b). Instead of assuming that [EG] = [EP], we shall assume that the 
/3-galactoside permease is the rate limiting enzyme in the reaction or in 
effect the @galactosidase is in excess. Kennedy (1970) states that the 
transport across the cell membrane is the rate limiting reaction in the 
metabolism of lactose. We use this assumption to consider [EG] as a 
constant. With an appropriate scaling of the constants a5 and b,, the system 
of equations (40) becomes 

&(t) = a&t - r3) - b,x,( f), (41c) 

h(f) = a&t- r4) - h&4(~), (4ld) 

%.5(f) = a,x,(t) - b,x,( t). (4le) 

A second simplifying assumption is if the constant K3<<. 1 in equation 
(41b), then the xi term in the denominator can be omitted. This would 
change equation (41b) into the following: 

i.2( t) = a2xl(t-r2N1 +K2(x4(t-r2)Y) 
(1+&(X4(f-r2)Y) 

- b2x2( cl, (42b) 

resealing a2 and K,. Equations (42b), (41c), and (41d) closely resemble 
the induction models found in the literature (e.g. Griffith, 19686; Othmer, 
1976; Banks & Mahaffy, 1979). The principle difference is the appearance 
of the x1( t- rJ in the non-linear growth term on the right hand side of 
the equation (42b). Equations (41b) (or 42b)). (41c), and (41d) represent 
the inner induction loop of our model. Equations (41a) and (41e) form the 
outer control loop. Note that these equations are in the form found in the 
literature for repression models (e.g. Griffith, 1968~~; Othmer, 1976; Banks 
& Mahaffy, 1979). Combining equations (41a), (42b), (41c), (41d), and 
(41e), we obtain a model for an induction process controlled by a repression 
process. Note that this is an oversimplification of the model for the lac 
operon. 

The equations (40) can be reduced to system of delay differential 
equations with only three delays by a change of variables as seen in an der 
Heiden (1979) or Mahaffy (1980). Furthermore by resealing the state and 
time variables to non-dimensional units we can eliminate several of the 
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parameters. If we let Zi denote the resealed state variables, t be the resealed 
time variable, and R, be the resealed delays, then the system becomes 

i2(f)=(1+K,z,(t))(l+K,(z,(t-R2))P)+K, 
- b2ZZ(f), 

K?(t) = z*(t) - b++(t), 
(43) 

where the his and Kis are suitably resealed. 
Similarly a change of variables can make the simplified induction- 

repression model given by equations (41a), (42b), (41c), (41d) and (41e) 
into a system of delay differential equations with only two delays. As before 
a resealing of the state and time variables to non-dimensional units can 
eliminate six of the parameters, so that the following system of equations 
is obtained: 

i,(t) = 
1 

1 +(zs(t- 7-,)f blzl(rL 

i 
2 

(t) = zl(t)[l +K2(-74(t- 7.2W’l- /, z ttj 

[l+K,(z,(t-T2))7 ’ ’ ’ 
(44) 

-h(t) = z,(t) - b3(t), 

&(f) =3(t) - hG4lf), 

is(f) = G(f) - ks(tL 

where Zi denotes the resealed state variable, t is the resealed time variable, 
T, are the shifted delays, and the his and Kis are suitably resealed. This 
system with only two delays allows a more detailed mathematical analysis. 

This research is partially supported by the National Science Foundation under 
NSF-MCS81-02828. 

REFERENCES 

ALLWRIGHT, D. J. (1977). J. math. Biof. 4, 363. 
AN DER HEIDEN, U. (1979). J. math. Analysis Applic. 70, 599. 
BANKS, H. T. & MAHAFFY, J. M. (1978~). Q. appl. Marh. 36, 209. 
BANKS, H. T. & MAHAFFY, J. M. (1978b). J. theor. Biol. 74, 323. 



102 J. M. MAHAFFY 

BANKS, H. T. & MAHAFFY, J. M. (1979). Mathematical Models for Protein Biosynthesis. 
LCDS Technical Report. Providence, Rhode Island: Brown University. 

BECKWITH, J. & ZIPSER, D. (1979). The Lactose Operon. Cold Spring Harbor, New York: 
Cold Spring Harbor Laboratory. 

BERG, 0. G. & BLOMBERG, C. (1977). J. theor. Biol. 67, S23. 
FRASER, A. & TIWARI, J. (1974). J. theor. Biol. 47, 397. 
GILBERT. W. & MULLER-HILL. B. (1976). TheLactose Operon. (Beckworth, J. R. & Zipser. 

D., eds), p. 93. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory. 
GOODWIN, B. C. (1963). Temporal Organization in Cells, New York: Academic Press. 
GOODWIN, B. C. (1965). Adu. Enzyme Reg. 3, 425. 
GRIFFITH, J. S. (1968n). J. theor. Biol. 20. 202. 
GRIFFITH, J. S. (19686). J. theor. Biol. 20, 209. 
HADELER, K. P. & TOMIAK, J. (1977). Archs ration. Mech. Analysis 65, 87. 
HASTINGS, S. P., TYSON. J. J. & WEBSTER, D. (1977). J. Differential Equations 25, 39. 
HUBER, R. E., WALLENFELS, K. & KURTZ. G. (1975). Can. J. Biochem. 53, 1035. 
HUBER, R. E., KURTZ, G. & WALLENFELS, K. (1976). Biochemistry 15, 1994. 
JACOB, F. & MONOD, J. (1961). Cold Spring Harbor Symp. Ouanf. Biol. 26, 193, 389. 
KENNEDY, E. P. (1970). The Lactose Operon (Beckwith, J. R. & Zipser, D., eds). p. 49. 

Cold Spring Harbor, New York: Cold Spring Harbor Laboratory. 
KEPES, A. (1971). J. membr. Biol. 4, 87. 
KNORRE, W. A. (1969). Biochem. biophys. Res. Comm. 31, 812. 
KNORRE, W. A. (1973). Biological and Biochemical Oscillators (Chance, B. et nl. eds), p. 449. 

New York: Academic Press. 
MACDONALD, N. (1977). J. theor. Biol. 67, 549. 
MAGASANIK, B. (1970). The Lactose Operon (Beckwith. J. R. & Zipser, D.. eds), p. 189. 

Cold Spring Harbor, New York: Cold Spring Harbor Laboratory. 
MAHAFFY, J. M. (1980). J. math. Analysis Applic. 74, 72. 
MEES, A. I. & RAPP. P. E. (1978). J. math. Biol. 5, 99. 
MILLER, J. H. & REZNIKOFF, W. S. (1978). The Operon, Cold Spring Harbor, New Yorh: 

Cold Spring Harbor Laboratory. 
OTHMER. H. G. (1976). J. math. Biol. 3. 53. 
TYSON, J. J. & OTHMER, H. G. (1976). Progress in Theoretical Biology (Rosen, R. & Snell. 

F. M., eds). New York: Academic Press. 
WALTER, C. F. (1971). Biochemical Regulatory Mechanisms in Eukaryotic Cells (Kun, E. & 

Grisolia, S.. eds), p. 355. New York: Wiley. 
ZABIN, I. & FOWLER, A. V. (1970). The Lactose Operon (Beckwith. J. R. & Zipser. D.. 

eds), p. 27. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory. 
ZABIN. I. & FOWLER, A. V. (1978). The Operon (Miller. J. H. & Reznikoff. W. S.. eds). 

p. 89. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory. 
ZUBAY, G. & LEDERMAN, M. (1969). Proc. natn. Acad. Sci. U.S.A. 62, 550. 


