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An analysis of local behavior is made of two nonlinear models which 
incorporate both an induction or positive feedback control mechanism and 
a repression or negative feedback control mechanism. The systems of 
differential equations with delays are linearized about their equilibria. The 
related characteristic equations which are exponential polynomials are 
studied to determine the local stability of the models. Computer studies 
are included to show the range of stability for different parameter values, 
and the biological significance is discussed briefly. 

1. Introduction 

In this paper we shall study the local behavior of the models developed in 
Mahaffy (1983). We shall concentrate our studies on the highly nonlinear 
model of induction and repression derived from the lac operon using enzyme 
kinetics and the simplified induction-repression model. The first is given by 
the system 

i,(t) = 
1 

(l+(z,(t-RI))‘) -b1z1(t)’ 

z,(t)(l +&(z,(t-R,)Y’) 
i2(f)=(1+K3z~(t))(l+K4(z4(t-R2))P)+K5-b2Z2(t)~ 

(1) 

h(t) = zz(t) - b&t), 

-h(f) = ZAt-Rx) - hzAth(t) 

-h(t) = z,(t)z,(t)- b4f). 
103 
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The simplified induction-repression model is given by the system 

iI = 
1 

l+(z,(l-~~))Y-blZl(f), 

i 
2 
([) = z,(t)(l +K*Mf- G))“- b,z,(t) 

l+K,(Z‘+(t- T2))P - ’ 

23(t) = z,(t) - b3zAt), 

A(t) = Zdf)- 6424(t), 

%3(f) = h(f)- b,z,(t). 

(2) 

To study local behavior the equilibria of equations (1) and (2) must be 
found. The systems of differential equations are then linearized about these 
equilibria. The local stability is then determined by an analysis of the 
characteristic equation, which is a complicated exponential polynomial. 
Several examples are analyzed with the aid of computer studies and the 
biological relevance is discussed. 

2. Equilibria 

In this section we shall determine the equilibria of the systems (1) and 
(2). Note that it can be easily shown for both equations (1) and (2) that 
the positive orthant is invariant, and in fact there is a bounded invariant 
region in the positive orthant. The latter follows from the nonlinear function 
in the first equation of each model being monotonically decreasing in z5. 
Hence the important physical behavior is contained in a bounded region 
which includes all the equilibria. 

The equilibria of the systems of delay equations are found by substituting 
the constant solution f = (X,, X2, Z3, X4, X5)r into the equations with i, = 0. 
The resulting algebraic system of equations for (1) is given by the 
following: 

1 

1 +(xs)y 
= b,q, 

P,(l +Kz(n,)“) 

(1+K3Xl)(1+K4(~4)P)+Ks 
= b2X,, (3b) 

~52 = bjXj, (3c) 

I, = b4X3Z4, (3d) 

x& = b&. (3eJ 
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From equation (3d) it is easily seen that either f3 = 0 or Xj = l/b,. The 
former leads to a contradiction of 2s being an equilibrium solution, so 
X4 = l/b,. Hence, 

X2 = b3b4b5X5 and X2= fl CL 
b,(C,+ Cd,) 

where C, =(l+K,(llb,)“), C2=1+K4(1/bq)“+K5 and c3 = 
K,( 1-t K,( l/ b,)“). From equation (3a) we see that X, = I/( b,( 1-t X5”)). 
Combining the above information we obtain 

(4) 

The right hand side of equation (4) is a function in x5 monotonically 
decreasing to zero, while the left hand side of equation (4) is the increasing 
function x,; hence there is a unique solution & to equation (4). By substitut- 
ing the unique value & into the system (3), we can readily find the equili- 
brium solution % = (Xi, fZ, xX, &. z,)~. 

Similarly, the constant solution ff = (Xi, X2, X3, z?~, X5)’ can be substituted 
into equation (2) to give the following algebraic system of equations: 

(5b) 

x’, ~, = b$,, i = 3,4.5. (52) 

From equation (SC) it follows that X2 = b,b,b,&. Let B = b, b2b3bjb5, then 
using equation (5) we see that 

B& = 
1+ KA b&Y’ 

(l+X.~)(l+r<,(b,~,)p)’ 
(6) 

The left hand side of equation (6) is a linear function of x5. However, it is 
impossible to determine whether or not the right hand side of the equation 
increases as a function of x5. It is clear that at x5 = 0 the right hand side is 
equal to one, while as xs + a the right hand side of equation (6) tends to 
zero, implying that there is at least one solution to equation (6). There can 
be as many as three equilibria satisfying equation (6) as we shall show later 
by example. For p and y integers Descartes’ Rule shows that there are at 
most three values for X5. As K2 > Kq, the quantity (1 + K2( b,.Q”)/( 1 + 
K4( b+Q”) represents the familiar S-shaped saturation curve found in induc- 
tion models. The term l/( 1 +i:) forms the monotonically decreasing 
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FIG. 1. Solution of equation (6) 

repression term. The amount of induction compared to the amount of 
repression determines the number of equilibria (Fig. 1). 

3. Linearization of the Models 

In the previous section we found the equilibria of the models given by 
equations (1) and (2). In this section the linearization of the models will 
be developed and the corresponding characteristic equations shown. We 
shall begin with the analysis of system (1). 

Let x, = zi - X,, where f = (X, , X2, X3, X4, Xs) T is the equilibrium solution 
of equation (l), and define the following: 

f(5)= l l+([+n,) -b1x17 
and 

s(57 n) = 
(5+-f1)(1+K2(77+w) 

(1+K,(5+~,))(l+&(71+~4)P)+& 
- b&. 

We can now write a system of differential equations equivalent to equations 
(1) in the following manner: 

i,(t) =f(x,(t-R,)) - b,x,(f), 

ir,(t)=g(xl(t), xcd-&)I-bAt)> 
ij(f) = xz(t) - b3xdf). 

&(t) =xdt-&- b4(x3(t)~4+X3x4(t)+xg(t)xq(t)). 

is(t) = (x,(t)ff,+.f,x,(t) +xj(fMf))- b5xs(t). 

In equation (7) the zero function is the unique equilibrium solution. 

(71 
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We shall consider the linearization of equation (7) about the solution 
x(t) = 0. With the following notation: 

yi:-’ 
f’(O) = - (I+ K,( QY)L 

g,(O,O)=~(O,O)= 
(l+K,+K,x:)(l+K,x:) 

I [( 1+ K,f, I( I + K& ) + K$ 

and 

g,(o, o) = 2 (o, o) = P%-c’ [( 1+ K3-6 )(K, - m + KS51 
4 [(l+K,ff,)(l+K,x~)+K,]’ 

we obtain the following characteristic equation for the linearization of 
equations (7) about the solution x(t) = 0: 

det 

-b,-A 0 0 0 f’(0)epAKI 
g,(O,O) -b--h 0 g,(O, 0) eCAR2 0 

0 i -6,-A 0 0 
0 0 -b&+ephR~ -b4X3-A 0 
0 0 X4 x3 -b,-A 

= 0 

To evaluate this determinant we expand by the fourth row first. The 
remaining 4 X 4 determinants can be expanded in any manner the reader 
chooses. The resulting characteristic equation can be expressed as follows: 

(b,x,-e~“R?)P,(A)-(b,x,+h)P,(A)=O, (8) 

where P,(A)=-{(b,+A)(b,+A)g~(0,O)e~“H~+~,g,(O,O)f’(O)e~“R~}, and 
P~(A)=(b~+A)(b~+A)(b,+A)(b~+A)-f’(O)g,(O.O)R,e~“R~. Equation 
(8) is a complicated exponential polynomial. 

Now we shall consider the system (2). Let 

h(5 n)=(5+fl)(l+K,(77+~J)P) 

(1+K,(77+X‘JP) 
b x 
2 2 

and 

x, = 2, - x,, 

where X = (Z,, .&, &, X4, -Qr is an equilibrium solution of equation (2). 
Recall that in this case there may be as many as three equilibria. A system 
of differential equations equivalent to equations (2) can be written as 
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x,(f)=~(X,(f-T,))-b,x,(t), 

.~,(f)=h(x,(t).xj(t-T,))-b,.r,(f), 
X,(f)=xdf)-hGJf), 

G(f) = X,(f) - b,&(f), 

.li~(f)=X,(f)--h,x,(f). 

(9) 

In equation (9) the zero function is an equilibrium. 
Linearizing equation (9) about the solution x = 0, we obtain the following 

characteristic equation: 

-b,-A 0 0 0 f’(O) e *T1 
h,(O,O) -bz-A 0 hz(O, 0) epA7, 0 

det 0 1 -b.,- A 0 0 =o. 
0 0 1 -b,-A 0 
0 0 0 1 -b,-A 

where 

,,,O,O~=~(O.O,=~~~~~~ 
dx, 

and 

hz(O, 0) = g (0,O) = 
pXIX:-‘(K1-Kq) 

4 (1 +K,.C,P)2 

By expanding the determinant the characteristic equation can be written 
as follows: 

fJ, (b,+A)-h(O,O)f’(O)e ~“‘~-(b,+h)(b,+A)h,(0,0)e~A7~=0. 

(10) 

Local stability of the systems (7) and (9) can be analyzed by determining 
whether any of the eigenvalues A which satisfy equation (8) or (10) lie in 
the right half plane. 

4. A Brief Discussion of the Parameters 

The model given by equations (1) has a large number of parameters. The 
system of equations (1) is a nondimensional model based on the highly 
nonlinear induction-represssion model in Mahaffy (1983). The parameters 
y and p are the Hill coefficients for their respective reactions. For the 
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example of the lac operon the parameter p represents the degree of 
cooperativity between allolactose and the repressor protein. The repressor 
protein is inactivated by two to four molecules of allolactose. Experiments 
of Zubay & Lederman (1969) and Yagil & Yagil (1971) give the value of 
p near two. The parameter y is the degree of cooperativity of glucose 
binding to a repressor protein in the unknown repression or inhibition of 
c-AMP. Many known repression processes in prokaryotic cells involve a 
degree of cooperativity between one and two (Yagil & Yagil, 1971). 

The his are associated with the decay of the various chemical species. 
The nondimensionalized parameters b, are inversely proportional to the 
half-lives of the particular chemical species, several of which are known for 
the lac operon. The half-life of the mRNA is known to be about two 
minutes (Beckwith & Zipser, 1979). The /3-galactosidase and P-galactoside 
permease are stable (though there appears to be some loss of activity with 
age (Rotman, 1970)), which implies the decrease in concentration of these 
enzymes is mainly due to dilution by cell growth. The half-life is then 
approximately equal to the cell doubling time which is about 50 minutes. 
The value for the parameter b, is more difficult to determine because of 
the second order kinetics; however, it should be relatively large because of 
the rapid turnover rate of lactose inside the cell. b, is proportional to the 
rate of utilization of glucose which should have a large value as glucose has 
a rapid turnover rate. The linear decay term used in the model could be 
improved by using a nonlinear Michaelis-Menten velocity term. Recently 
there have been investigations of the Goodwin repression models with the 
endproduct satisfying this type of decay (Painter & Tyson, 1982); however, 
we shall not investigate this effect here. 

The decay R2 can be estimated as seen in Banks & Mahaffy (1979). R2 
is a delay representing the sum of the delays for transcription and translation. 
Recall that translation in prokaryotes begins before the process of 
transcription is completed. The delay for transcription and translation with 
coupling considered is between one and two minutes. R3 is a delay account- 
ing for transport across the cellular membrane. The delay R, is more 
involved as it includes the sum of the delays for transcription and translation 
and a delay for the catabolite repression of c-AMP which is more difficult 
to estimate. 

Finally, we must consider the Kis. These parameter values are unknown. 
The KiS determine the magnitude of the effects of induction and repression, 
so they are sensitive to any scaling. The only information we have is that 
K2 > K4 in order that there be induction. The induced cell produces enzymes 
at a rate 1000 times greater than the basal rate (Gilbert & Muller-Hill, 
19701. 
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The above discussion applies to the simplified induction-repression model 
given by equations (2), except for the part concerning b,. Also, the delays 
are given by T, = R, + R3 and T, = R2 + Rj. 

5. Numerical Studies and Local Stability 

In Section 2 the equilibria were determined for the models (1) and (2). 
then in Section 3 the models were linearized about their equilibria. Model 
(I) has a unique equilibrium. The local stability of the equilibrium can be 
studied by analyzing the characteristic equation (8). For model (2) there 
is a possibility of more than one equilibrium. The local stability of each 
equilibrium can be studied by an analysis of the characteristic equation 
(10). Below we shall present stability results concerning the different models 
and discuss the biological significance of these results. 

In the model given by equation (7) the parameter R3 is a very small 
delay, so as a first approximation we shall let R, = 0. With this assumption 
the characteristic equation reduces to ( b4X3 + h )P2( A) = 0. P2(A) is of the 
form given in Theorem 1 of Mahaffy (1982). In the proof of this theorem 
a technique is given to determine the critical value r,, at which the eigenvalues 
cross the imaginary axis. For RI > r (,, the system of equations (7) is locally 
unstable. Table 1 gives examples of how different values of the parameters 
affect the stability of equations (7). In Table 1 the following values of 
b, = 0.5, and b, = 0.02 are kept constant. 

The values of r,, given in Table 1 represents how large the parameter R, 
must be to destabilize the equilibrium of equations (7) for a particular set 
of parameter values. From Table 1 it is easily seen that the parameter that 
most affects the stability is y which occurs in the part of the biological 
problem that is least understood. The b,s, especially b4, appear to have the 
second largest effect on the stability of the system (7). The stability of the 
system (7) is not as sensitive to changes in the parameters K, and p. 
Numerical integration of the model given by equations (7) with parameter 
values such that the equilibrium is locally unstable indicate the existence 
of periodic solutions. A rigorous proof of their existence remains an open 
questions. Damped oscillations have been observed in E. coli by Knorre 
(1968, 1973). 

If the parameter R? is not equal to zero the exponential polynomial given 
by equation (8) is substantially more difficult to analyze. The theorems of 
Mahaffy (1982) do not apply; however, the contour C with *h/R, as the 
bounds of the imaginary part in that paper can be used for analyzing the 
stability of specific examples. Consider the model where the parameter 
values are given by the first line of Table 1. For R3 = 0 the eigenvalues 
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TABLE 1 

The equilibrium value .i& and the critical value of the delay RI = r, where 
the eigenvalues cross the imaginary axis are tabulated for different parameter 

values for the system (7) 

b, b, b, Kz K, k’, K, Y P 

1 
10 
10 

1 
1 

0.1 
0.1 
0.1 
1 
1 
1 
1 
1 
1 
1 

10 
1 
1 
1 
1 
1 
1 
1 

100 1 
100 1 
100 1 
100 0.1 
100 0.1 
100 0.1 
100 0.1 

1 0.1 
100 0.1 
100 10 
100 0.01 

1000 0.1 
100 0.1 
100 0.1 
100 0.1 
100 0. I 
100 0. I 
100 0. I 
100 0.1 
100 0. I 
100 0.1 
100 0.1 
100 0.1 

1 0 2 2 
1 0 2 2 
1 0 7 2 
0.1 0 2 2 
0.1 0 2 2 

0.1 0 2 2 
0.1 0 2 2 
0.01 0 2 2 
1 0 2 2 
1 0 2 2 
1 0 2 2 
1 0 2 2 
0.1 0 2 2 
0.1 0 2 7 
0.1 0 2 3 
0.1 0 2 2 
0. 1 0 2 4 
0.1 0 4 4 
0.1 0 4 2 
0.1 0 1 2 
0.1 10 7 2 
0.1 -0.5 2 2 

0.1 100 2 2 

x5 r1, 

17.1 s7.4 
7.88 60.8 
3.60 67.2 

45.1 53.1 
96.9 56.X 
45.1 s3.1 

450 48.X 
172 48.X 

17.1 57.0 
16.9 60.6 
17.1 57.0 
36.8 56.X 
20.9 57.0 

2.58 74.9 
0,659 ic 
0,975 K 

20.9 57-o 
6.20 20.1 
6.20 20.1 

95.3 x 

9.66 57.8 
25.6 57.0 

4.57 61.6 

cross the imaginary axis near RI = 57.4. When R3 = 0.5 the critical value 
of RI is 57.0 in order that the equilibrium becomes locally unstable. For 
R3 = 1 the critical value of R, is 56.6 and for R3 = 5 the critical value of 
R, is 54.1. For this analysis we assumed that R2 = RI and then considered 
the first part of equation (8) a perturbation of the exponential polynomial 
P,(h). Our studies indicate that the delay R3 destabilizes the system (7), 
i.e., as the value of R3 increases the value of the delay R, needed to have 
the eigenvalues in the right half plane decreases. 

We have stated without proof that R3 > 0 destabilizes the system (7). A 
heuristic argument using the argument principle or Nyquist criterion is given 
below. Let A traverse the contour C of Mahaffy (1982) in the counterclock- 
wise direction with kkr/R, as the bounds of the imaginary part and map 
(b&+A)P,(h). This case is analyzed in Mahaffy (1982). From equation 
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(8) we see that for stability the map 

F(h)=(b,x,+h)Pz(A)-[l-exp(-hR3)]P,(A) 

must be considered. The term -[ 1 - exp (-AR,)]P, (A) is treated as a per- 
turbation of F(A), assuming R3 is small. For A = iv with Y > 0 small it can 
be shown that the above perturbation shifts the map initially to the right 
of the contour of the unperturbed or R, = 0 system, i.e., initially the angle 
0 between the positive real axis and the line segment F(O)F(iv) is smaller 
for the perturbed system than the unperturbed system, 0 < 0 < 271. By 
applying the techniques of Mahaffy (1982) one can compare the maps of 
the unperturbed and perturbed systems and see that the shift changes the 
relative position of the map F(A) so as to destabilize the system (7). 

The mode1 given by the system of equations (9) has the possibility of 
multiple equilibria. For this study the parameters 6, and b, were fixed at 
5 and 0.2 respectively. Table 2 shows how the equilibria and the stability 
of the equilibria change as the values of the parameters change. From Table 
2 it is seen that there are five basic types of behavior. Figures 2-5 illustrate 
four of these basic types. The figures are obtained by integrating the system 
of equations (9) with a fourth order scheme for delay equations and a 
stepsize h =0.2. Figures 2 and 3 use the parameter values given in line 3 
of Table 2. The trajectories were formed by starting near each of the 
equilibria with constant initial functions. The initial values for each of the 
four trajectories starting from the bottom and working up are x5 = x2 = rl = 
0.04, 0.236, 0.238, and 1.0, X, =0.1995, 0.1894, 0.1914. and 0.1, and 
x3=0.25, 1.18, 1.182, and 5. In Fig. 2 the delay T, =2 which from Table 
2 gives two stable equilibria and one unstable equilibria. (Note that the 
middle equilibrium point is always unstable.) In this case all solution trajec- 
tories of equation (9) approach the two stable equilibria. In Fig. 3 the delay 
T, = 9 which from Table 2 gives one stable equilibrium and two unstable 
equilibria. In this case the solution trajectories either asymptotically 
approach the lower stable equilibrium or they oscillate about the upper 
unstable equilibrium. It appears that in the latter case the trajectories 
asymptotically approach a stable periodic solution though this has not been 
proved. A third type of behavior could be illustrated by considering 
equations (9) with parameter values from line 2 of Table 2 and T, = 750. 
For technical reasons this case was not integrated though the expected 
behavior is two attracting periodic trajectories about the upper and lower 
unstable equilibria with the upper trajectory having a much greater 
amplitude. 

The other two types of behavior are shown in Figs 4 and 5. These figures 
use the parameter values given in line 8 of Table 2. The trajectories were 
formed by beginning at x5 = x2 = xJ = 2.5, xi = O-1379, and xj = 12.5 which 
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TABLE 2 

The equilibria values ff5 and the critical values of the delay R, = r, where 
the eigenvalues cross the imaginary axis are tabulated for different parameter 

values for the system (9) 

b, b, b, KZ K.l Y  P 

5 

s 

5 

5 

5 

5 

5 

1 

5 

5 
5 

5 

5 

5 

5 

5 

3.5 

3.92 

4 

5 

6 

6.695 

7 

5 

5 

5 

5 

5 

5 

5 

5 

5 

1 

I 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

100 

100 

100 

100 

100 

100 

100 

100 

100 

50 
200 

100 

100 

100 

100 

100 

1 

1 

1 

1 

1 

1 

1 

1 

I 

1 

1 

0.5 

2 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

4 

4 

1.33 

1.23 
0.108 
0.101 

1 0.130 0.084 1.21 

i 0.236 0.050 1.01 

i 0.809 0.349 0.038 

i 0.568 0.529 0.033 

0.0313 

2.45 

i 0.862 0.110 0.025 

0.0436 

1.61 
i 0.225 0.050 1.36 

i 0.666 0.271 0.049 

i 

I.02 
0.351 
0.046 

i 0.980 0.039 1.29 

1.06 
0.9309 
0.040 

6.36 

6.52 
0 

726 
6.6 

0 
oc 

7.13 
0 
‘x 

14.3 
0 
oc 

82.9 
0 
cc 

cx 

5.03 
15.7 

0 
cc 

s: 

5.94 
8.42 

0 
lx 

15.7 
0 
K 

16.1 
0 
cc 

17.9 
0 
I 

19.7 
0 
cc 

is near the unique equilibrium. In Fig. 4 the delay T, = 3 and we see that 
the trajectory asymptotically approaches the equilibrium solution. In Fig. 
5 the delay T, = 6 which from Table 2 implies that the equilibrium is 
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FIG. 2. Trajectories for the model with three equilibria and r, = 2 

I 

x5 

0 

FIG. 3. Trajectories for the model with three equilibria and T, =8 

FIG. 4. Trajectory for the model with one equilibrium and 
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2.0 
0 50 loo 150 200 

FIG. 5. Trajectory for the model with one equilibrium and T, = 6. 

unstable. In this case the trajectory oscillates with increasing amplitude 
about the equilibrium solution. 

In order to study the stability of this system the characteristic equation 
(10) is used. As in our study of the system (7) we shall first eliminate one 
of the delays in order to analyze equation (10). Let T2 = 0. By making this 
simplification equation (10) reduces to the following equation: 

H(A, T,)=(b,+A)(b,+A)[(b,+A)(b,+A)(b,+h)-h2(0,0)1 
+A emAT 

=P(A)+AepAT1 (11) 

where A=-h,(O,O)f’(O). If blbS(bZb~bq-h*(O,O)<A,then when b2b3b4- 
h2(0, 0) > 0, the Routh-Hurwitz criterion (Lancaster, 1969) can be applied 
to P(A) to show that H(A, Tl) in equation (11) satisfies the conditions of 
Theorem 2 of Mahaffy (1982). In the proof of that theorem a technique is 
given for determining the bifurcation points (which may not be unique). In 
particular, the proof of the theorem gives a method for finding the bifurca- 
tion point r, for which all values of Tl > r, result in local instability. 

For the cases in Table 2 where b2b3b4 - &(O, 0) > 0 and b, b,( b,b,b, - 
h2(0, 0) > A, consider IP(-iv)1 where v is real and P is defined as in equation 
(11). It can be shown that IP( - iv)1 is monotonically increasing as a function 
of v for the examples in Table 2, so a proof similar to the one given for 
Theorem 1 of Mahaffy (1982) has all solutions of H(A, T,) = 0 with Re A < 0, 
i.e., the system is locally stable. In Table 2 these cases are denoted by r, = co. 

When b,b,b,- h2(0, 0) < 0, the Routh-Hurwitz criterion can be applied 
to P(A) to see that P(A) has one real positive A satisfying P(A) = 0. By 
differentiating the function jP(-iv)1 with respect to V, it can be shown that 
IP(-iv)1 is monotonically increasing in V( Y 2 0). Again consider the contour 
C of Mahaffy (1982) with T, = r. If b, b5( h2(0, 0) - b2b3b4) > A, then as in 
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the proof of Theorem 1 of Mahaffy (1982) we see that H has the same 
orientation relative to the origin as P which implies H encircles the origin 
once. This implies H(h, T,) = 0 has one root with Re h > 0 (actually, A > 0 
real) independent of TI. This is denoted rn =0 in Table 2. However, if 
blb5hZ(0, 0) - bZb3b4) <A, then initially P(0) and H(0, Tr) align with the 
origin in between. Since IP(-iv)1 is monotonically increasing and tends to 
infinity as v + co, there exists a value v,, such that IP( = A. At 1’0 
calculate the value of arg P(-iv,,). Note that arg P(0) = n, and arg P(-it!) 
initially increases monotonically to some maximum less than 3~/2 before 
decreasing monotonically to 7r/2 as Y + 00. If arg P( -iv,,) 5 V, then using 
the contour C for any T, > 0 will give at least two encirclements of the 
origin. (There are no examples of this case in Table 2.) If arg P(-iv,,) > 7r. 
then by solving r, v0 = arg P( - iv,) - r for r, or 

r. = 
arg P( -iq,) - rr 

vo 

we obtain the critical value r, where two eigenvalues cross the imaginary 
axis, i.e., H(+ iv,, ro) = 0. For T, > r,, a geometric argument similar to those 
in Mahaffy (1982) give two eigenvalues with Re A > 0. 

The above arguments show how we arrived at the values for r,, in Table 
2. For the system of equations (9) the approximation T2 = 0 is not a good 
approximation. Analysis of equation (10) with T2 f 0 has been studied only 
for specific cases. For comparison with Fig. 5 an example with parameter 
values from line 8 of Table 2 and the same initial data is considered where 
the delays T, = 6 and T2 = 3. The trajectory from integrating this example 
is shown in Fig. 6. Unlike Fig. 5, this example shows slowly damped 
oscillations and in fact the equilibrium is attracting. 

A more thorough analysis of the regions of stability is given for the 
example with parameter values from line 8 of Table 2 and with different 

3-o 

x5 2 5 

2.00L--Ai 
FIG. 6. Trajectory for the model with one equilibrium and T, = 6, rz = 3 
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values of the delay T2. Again our analysis is based on work with the contour 
C of Mahaffy (1982) with T, = r. We find the value r, in a similar manner 
to the proofs of the theorems in that paper with 

P(A)= i (bi+A)-(b,+h)(b,+A)h,(O,O)e-“r~ 
i=l 

and 
Q(A) = h,(O, O)f’(O) e-“q. 

With a fixed value of T2, the critical value r, of T, can be determined where 
the eigenvalues from the characteristic equation (10) cross the imaginary 
axis. For example when T2 = 0, r. = 5.02, when T2 = 3, r. = 6.36, and when 
T2 = 6, r. = 7.88. A region of stability can be determined in the T1 T,-plane 
using the above information. Figure 7 shows the region of stability for the 
above example. Note that from the biological problem we must consider 
T2s T, only. 

IO 
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T2 5 
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1 
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0123456789 I 

FIG. 7. Region of stability for equation (9) with respect to the delays T, and r,. 

It is interesting to see that increasing values of T2 result in increasing 
critical values r. for Tl. The perturbation caused by the delay T2 is thus a 
stabilizing one. From the biological argument one sees that an increase in 
the delay T2 increases the delay time for transcription and translation in 
the induction process but for constant T, increasing T2 decreases the delay 
time for the repression of x,(c-AMP) by x5 (glucose). This suggests that 
the unknown negative feedback process is perhaps the most important part 
of the model that contributes to the observed oscillations. Our study 
considered only a few examples and leaves room for further investigation. 

Another case of particular interest from the biological point of view is 
when y = 1 for equation (9). From Table 2 line 14 we see that for T, > 16.1 
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the system (9) becomes unstable. For this case the system has a degree of 
cooperativity of one in the repression part and can become locally unstable 
for sufficiently large delays. The main interest of this result is that without 
the induction term the model reduces to the Goodwin model with delays 
which was shown to be globally asymptotically stable independent of the 
delays (see Allwright, 1977; Banks & Mahaffy, 1978). 

From our studies above we have shown that the induction-repression 
model (7) may have a locally unstable equilibrium for biologically significant 
parameter values, but that the model is highly sensitive to certain parameters 
involved in the unknown reactions leading to catabolite repression. In the 
simplified induction- repression model given by equation (9) there may exist 
three equilibria. Biologically, this could mean that a certain threshold of 
initial concentrations are needed to start the induction process with the 
smallest equilibrium being the intracellular steady-state at low concentra- 
tions. For some parameter values we have shown that the model (9) is 
locally unstable. T’le model (9) was shown to be locally unstable for some 
delays when y = 1, which is significant considering several known repression 
processes in prokaryotic cells. The above information could be useful in 
explaining observed epigenetic oscillations in prokaryotic cells. 

This research is partially supported by the National Science Foundation under 
NSF-MCS81-02828. 
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