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 THE EFFECTS OF DIMENSION AND SIZE FOR

 A COMPARTMENTAL MODEL OF REPRESSION*

 S. N. BUSENBERGt AND J. M. MAHAFFYt

 Abstract. The bifurcation of time periodic solutions in a compartmental reaction-diffusion model of a

 eukaryotic cell is studied as a function of various physical parameters including the size of the cell and the

 delays due to transcription and translation. The analytical results suggest a possible mechanism for the

 triggering of mitosis which is in qualitative agreement with observed behavior. These results are based on

 both detailed analyses of specific cases and on numerical solutions of the model equations.

 Key words. compartmental reaction-diffusion system, delay partial differential equations, Hopf bifurca-

 tion, cell model, control by repression, cell clocking mechanism

 AMS(MOS) subject classifications. 92A09, 34K99, 36K60

 1. Introduction. We examine a compartmental model with diffusion and delays

 and propose a possible mechanism for triggering mitosis, the process by which a cell

 divides into two new cells. The model which we analyze is developed from the Jacob

 and Monod [12] theory for genetic control of biosynthetic pathways by negative

 feedback or repression. It is derived using basic biochemical kinetics and certain

 standard velocity approximations in a manner similar to that of Goodwin [7], [8]

 whose nonlinear mathematical models have been studied extensively (cf. [2], [7]-[9],
 [18], [19], [21], [23]-[25]). In his work Goodwin suggested that both delays from
 transcription and translation and the process of diffusion of the biochemical species

 could be significant in destablizing steady-state solutions of the mathematical models,
 while experimental evidence [1, Chap. 11], [6] supports the introduction of a compart-

 mental model. The triggering mechanism for mitosis which we suggest involves the

 destabilization of the steady-state solution of the reaction-diffusion equations of our
 model. There are two possible ways in which this destabilization can occur. The first

 leads to a time periodic solution via a Hopf bifurcation and the second to a different

 steady state. The latter type of bifurcation is due to differences in the diffusion rates
 of the reacting species and was first proposed by Turing [22] as a possible cause for

 biological pattern formation. More recently, Hunding [10] and Hunding and Billing
 [11] have studied in detail a single compartment, two-species reaction-diffusion model
 where this second type of destabilization occurs and which they suggest as a possible
 cause of mitotic prepattern formation in the cell. In our model the steady-state solution

 is unique for a wide range of the pertinent parameters and this second type of
 destabilization does not occur. Hence, we study the first type of bifurcation which

 leads to a time periodic solution when the steady state loses its stability.

 The model we treat includes the biochemical transcription and translation delays,

 the diffusion of the reactants and the compartmental nature of the cell. It is based on
 the generalization by Busenberg and Mahaffy [5] of an earlier model of Mahaffy and
 Pao [17]. The specific model diagrammed in Fig. 1.1 consists of two compartments

 enclosed within the cell wall and separated by a permeable membrane. The first

 compartment is labeled t in Fig. 1.1 and is regarded as a well-mixed compartment
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 FIG. 1.1. The two-compartment eukaryotic cell model.

 (the nucleus) where mRNA is produced. The second compartment denoted by fQ\W
 consists of the cell interior Q minus the nucleus w and represents the cytoplasm in
 which the ribosomes are randomly dispersed. It is here that the process of translation
 and the consequent production of the repressor occurs. The communication between
 the nucleus and the ribosomes, where translation occurs, is by diffusion in the cytoplasm
 and transfer through the membrane bounding cw. Let u, and v,, i = 1, 2, denote the
 concentration of mRNA and repressor, respectively, in compartment c for i = 1, and
 fl\w for i = 2, and assume c) is a well-mixed compartment. Then the repression model
 is given by the following system of equations:

 dU1(t) =f(vlt) - biu,(t) + a [u2(x, t) - u(t)] dS.,
 dt

 dv1 (t) =-b2Vi()+a2J [v2(x,t) - v1(t)]dS,

 au2(X, t)
 a l- .A l u2(x, t) - b,u2(x, t),

 aV2(X, t) - 92Av2(x, t) - b2v2(x, t) + g(u2,(x)), x E Qi\W
 a t

 with boundary conditions

 anAX, t) =- f3Ju2(x, t)-uI(t)], x E a, an

 a VA(X, t) = _,8 * [ V2 (X, t)- VI ( t)1, x E a(02
 an

 au2(x, t) av2(x, t) = O x E ai.
 an an 2

 The subscript t is used to denote dependence on the past history of a variable. Thus
 f(vl,) =jf[% v,(t+s) dy (s))], and in particular, we can have discrete delays of the
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 884 S. N. BUSENBERG AND J. M. MAHAFFY

 form (v, f[t t vl)v1( t ,- * *, v1(t- vn)], 0< v - v. The constants b, are kinetic rates of
 decay through degradation and/or dilution from cell growth, while the a, are the rates

 of transfer between compartments which we assume to be directly proportional to the

 concentration gradient. The ,ui are the diffusivity coefficients, and g(u21(x)) is the
 delayed production rate for the repressor. Following the model developed by Goodwin,

 we can take the simple form g(u2f(x)) = cOu2(x, t - A), where V2 represents a delay for
 translation. The function f is a decreasing function in v, representing the production
 of mRNA and is often of the form 1/[1 + k(v,,)P], where v,, represents the delayed
 concentration of v,.

 There have been several approaches to modeling the clocking mechanism for cell

 mitosis. We have already mentioned the destabilization of the unique steady-state

 solution of our model as a possible mechanism. Another theory postulates the existence

 of a trigger-protein which needs to accumulate to a threshold value before DNA
 replication can start [1, p. 617]. An alternative theory is provided by the "transition

 probability" model which postulates that the cell cycle time is regulated by a stochastic

 event [1, p. 618]. This model suffers from, the lack of a physical or chemical basis of
 this stochastic trigger. This defect is partially removed by the "chaotic clock" model
 of Lasota and Mackey [13] where a chaotic biochemical stimulus is suggested as the

 basis for cell cycle time variability. This model has been further developed by Mackey

 [14] and its predictions have been fitted to experimental results by Mackey et al. [15].
 The trigger protein model fits well with the variations in cell division times that have

 been observed; however, the trigger proteins have not been experimentally seen. In

 the next section we shall see that the trigger mechanism we are suggesting also explains

 the observed variations in cell division timing and has the advantage of being based
 on accepted cell biochemical processes; hence, it is a viable alternative theory for the

 trigger mechanism of cell mitosis.
 We note that for prokaryotic cells (cells without a separate nucleus), Tyson [23]

 and Bliss et al. [4] present models which demonstrate that a biochemical repression

 process could lead to epigenetic oscillations of certain biochemicals with a cycle time

 which approximates that of cell division. Tyson's analysis demonstrates that dilution

 of certain species could be critical in this clocking mechanism.
 In our model we shall demonstrate that, as the cell grows, the two-compartment

 equations (1.1) can undergo a change of stability. Through most of the cell cycle the

 biochemical concentrations ui and vi remain in a region of stability. However, as the
 cell's diameter increases, (1.1) exhibit a Hopf bifurcation, and hence the concentrations
 begin oscillating. These oscillating concentrations could trigger a gradient sensor in
 the cell and signal the beginning of DNA synthesis followed by mitosis. Alternatively,
 since the oscillations lead to peak concentrations which exceed the steady-state levels,
 triggering may occur when a critical component exceeds a threshold concentration level.

 In order to better present the implications of these results on cell timing, we first
 give the main numerical results we have obtained in the special case where f(v)=
 1/( + kv4), g(u)- cou and with spherical symmetry. Figure 1.2 shows bifurcation
 curves separating the region of stability of the steady state from the region where the
 oscillatory solution exists. The parameters that are varied are the radius R of the cell,
 the delay v, and the ratio 0 = r(/ R, where ro is the radius of the nucleus. Referring to
 Fig. 1.2, we can describe the details of the proposed triggering mechanism for the
 initiation of DNA synthesis preceding mitosis. As the cell grows from an initial size
 of radius Ro to a final size of radius R1, the steady state becomes unstable at radius
 R((o), triggering the gradient or threshold concentration sensing mechanism for the
 start of DNA synthesis. At size R1, the cell divides into two daughter cells of radius
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 FIG. 1.2. Dependence of the stability region on the cell radius and the delay.

 Ro and the process starts again for each of these two cells. It is experimentally observed
 that the time from start of growth (RO) to the initiation of DNA synthesis (R > Rc)
 can vary widely depending on the conditions under which the cell is growing. The

 time between the initiation of DNA synthesis and cell division (at R'), on the other
 hand, is remarkably constant [1, Chap. 11]. Cells which are arrested in the pre-DNA
 synthesis threshold also stop growing even though their general biochemical reactions
 must continue to compensate for degradation of chemicals in this constant size state.

 This is consistent with the above triggering mechanism. Also, cells that are flattened

 and, hence, have a larger ratio a of nuclear to cytoplasmic volume, have a faster

 division time. Even though our spherical model cannot simulate this flattening, the

 monotone decreasing nature of Rj(o), for fixed delay, under changes of a (see Fig. 1.3)

 10 *

 a 0.2

 W 5 0.25
 .4

 x - 0.3

 STABILITY REGION

 Q. 2.5 5. 7.5 10.
 CELL DIAMETER

 FiG. 1.3. Variation of the stability region with the diameter ratio.
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 is consistent with this observation when we recall that the time to go from R(o-) to

 R1 is fairly constant. Finally, the two daughter cells of a dividing cell are not exactly

 equal in volume but vary about a mean whose radius we denote by Ro. This distribution

 of initial sizes about Ro leads to a distribution of time of growth from Ro to R,; hence,
 since the time between R, and R, is constant, this implies a distribution of cell division
 cycle times about a mean corresponding to the size R0. This is a possible mechanism,
 implied by our triggering hypothesis, for the variability of cell cycle times on which
 the transition probability models are based. The general results which we have presented
 in our theorems and illustrated with the above special numerical example show that

 this type of bifurcation behavior is a consequence of a reaction-diffusion process with
 biochemical control by repression in a compartmentalized cell. The triggering mechan-

 ism we presented does not require any contrived forces or effects. It is affected, however,

 by environmental or other factors that change the growth rate, the shape, and the
 reaction and diffusion constants in ways that are consistent with experimental observa-

 tions.

 Our mathematical and numerical results are summarized in the next section.
 Section 3 contains the proofs of our theorems. We conclude with a presentation of

 our numerical techniques and a discussion of these results. In this article we concentrate

 on the mathematical development of the model. In a subsequent article we shall discuss
 the details relating our results to known biological data.

 2. Results. In this section we perform a detailed analysis of the two-dimensional

 and three-dimensional models of repression for symmetric geometries involving concen-

 tric cylinders and spheres, respectively. We consider the model (1.1) for a region as
 diagrammed in Fig. 2.1. If the cell radius is given by R and the inner radius is given

 by orR, then the following dimensionless parameters are introduced: r = tbl, ai
 aiR*l/ co - c=c0/b10,A j=ij/b1R2 r = x/R and ,81 = R,81, where k = 2 or 3 depending
 on the dimension of the system. We assume the linear form of g(u2,(x)) given above
 and make a change of variables to shift the delay into the nonlinear function f only.
 We start with a preliminary reduction of the problem which is similar to the one we

 (2\w 5

 Fic. 2.1. Concentric sphere model of the two-compartment cell.
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 gave for the one-dimensional case [5] and which we only outline here. The unique,
 radially symmetric, steady-state solution, (a,, v1, u', v'), is computed for the model
 (1. 1). After a change of variables to make the equations dimensionless and a translation

 of the steady-state solution to make the boundary conditions homogeneous, we have
 the following system of partial differential equations with delays:

 U(Tr) =f(V1(r- I)+ V1) -U1(T)+ Y1U2(0, RJr)+ Y1U2'(o)-(1 + Yl)ii1

 -F, (u I(r) VI,, U2(0-, r)),

 v'(T)=-b2v1(r) + y2v2(o-, T)) GI(Vl(T), V2(0-, T)),

 U2(r, T) l=Au2(r r) - u2(r, T) - u1(T) -Fl(U1(T), V1,, U2(0r, T))

 (2.1)
 -LAu2(r, T) - u2(r, T) - F2(vlr, u2(o-, T)),

 -v(r, T =A2AV2(r, T)-b2[v2(r, T) + V1(T)] + cO[u2(r, r) + U1(r)]
 d9T

 -GI(v1(T), v2(A, r))

 -12Av2(r, T) - b2v2(r, T) - G2(u1, u2(r, T), V2(, T)).

 The parameter v, is the dimensionless delay for the system. The parameters yi, i - 1, 2,
 are given by yi = 2iruai in two dimensions and yi = 41o2ai in three dimensions. The
 Laplacian Au is

 (1/ r) a [r-] and (1/r2)- Jr2C
 ar L9 aa r L rj

 for two and three dimensions, respectively, when u is radially symmetric. The boundary
 conditions are given by

 a =2(cr, r) l u2 aV2(0u , =r)
 a =J1 U2(07, r), =13 tV2 (07, r),

 u2(l, r) v2(1, _r)
 - ~ ~= 0

 ar ar

 where 6,I and ,3* are as before.
 We proceed in these higher-dimensional cases as we did in the one-dimensional

 case [5] and obtain a characteristic equation whose roots determine the stability of
 the steady-state solution. This equation takes the form

 (A + 1)(A + b2)(1+ y1 { K(s, a) e-AS ds)(1 + Y2 K*(s, cr) e-As ds)

 (2-2) 0 0 D0
 cOY2f (v1) e-Av K*(s, r) e-As ds -(A +1) I 5/([(s) e-As ds] =0 o o n=l

 where the kernels K, K*, and Xs depend on the region and on the boundary conditions
 and will be given explicitly later.

 For high diffusivity we compare system (2.1) to the related well-mixed two-
 compartment model which was analyzed in [17] and has the characteristic equation:

 (2.3) (A + 1)(A + b2)(A + 1 + a, + a3)(A + b2+ a2+ a4)-c0a2a3fU(v,) e-Av = 0,

 where the kinetic parameters are as given in [17]. For this well-mixed model, Mahaffy

 and Pao [17] give conditions when there exists a critical value of the delay v =Po
 which gives a Hopf bifurcation. The two-compartment diffusion model given by (2.1)
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 would be expected to behave in a manner similar to a well-mixed two-compartment

 model if the diffusivities A,i are sufficiently large relative to the other parameters. The
 next theorem compares the local behavior of the model (2.1) to the well-mixed model.

 THEOREM 2.1. Assume that the nondimensional diffusivities ,Ai tend to infinity and
 P,3, and f3 IL2 are finite. ConsiderA such that Re A > max {-1, -b2}. Then, in the limit,
 the solutions A which satisfy the characteristic equation (2.2) for the model (2.1) equal
 the solutions A to the characteristic equation (2.3) for the well-mixed two-compartment

 model with y, = a1, Y2= a2, 1P1 = a3 and P*12= a4.
 Let a =-coa2a3f'(01), where v1 is the equilibrium solution for the well-mixed

 model analyzed in [17]. Theorem 5.1 in [17] shows that if b2(1 + al + a3)(b2+ a2+ a4) <

 a, then there exists a critical delay Po such that for all ii> Po, (2.3) has at least two
 roots with Re A > O. If either b2(1 + al + a3)(b2 + a2 + a4) > a or O < v < Po, then all
 solutions of (2.3) have Re A <0. From this we see that a Hopf bifurcation occurs for
 (2.3) at v= i'P with appropriate conditions on the other parameters. Combining this
 information with Theorem 2.1, we obtain the following theorem.

 THEOREM 2.2. Assume b2(1 + a, + a3)(b2+ a2+ a4) < a and that vo is the critical
 delay for a Hopf bifurcation of the well-mixed model. If Ai are sufficiently large, a3 -
 and a4 =*,A2, then the system (2.1) has a Hopf bifurcation for some delay i0 with
 vo0[-e+ vo, vo+ E], r>0 small.

 The proof of this theorem is immediate from work done on the well-mixed model,
 Theorem 2.1, and the continuous dependence of a Hopf bifurcation for functional
 differential equations.

 The above theorems consider the stability for large diffusivities. Next a result is
 presented that shows stability of the stationary solution when the diffusivity tends to
 zero. Heuristically, one can argue that, in the limit of very small diffusivity, the chemical
 species cannot move far into the second compartment before decaying to low concentra-
 tion. Consequently, the delay needed to destabilize the stationary solution should
 increase as the diffusivity becomes very small. We will show that, in fact, there exists
 a positive cut-off value of the diffusivity below which the system is locally stable
 regardless of the size of the translation-transcription delay. So, the dissipative nature
 of the diffusion mechanism dominates for very small diffusivities. As we shall see in
 the numerical studies reported in ? 4, the dependence of the critical delay value at the
 bifurcation is a relatively complicated function of the diffusivity. Consequently, it is
 only in limited circumstances that an added discrete delay can be used to model the
 effects of diffusion in compartmental models of this type. The results for small diffusivity
 are summarized in the following theorem.

 THEOREM 2.3. Suppose that 81341 = a3, /*2 = a4, with a3, a4 fixed and suppose
 that Al, ,2 tend to zero. Then there exists d > 0 such that if 0 < Ai < d, all solutions A,
 which satisfy the characteristic equation (2.2), have real parts less than zero.

 What happens when the cell grows is of particular interest in studying cellular
 dynamics. In this case the parameters such as the decay constants, membrane per-
 meabilities, and diffusivities are kept fixed, while the cell radius is allowed to vary.
 For analysis of this system we must consider the system (2.1) in the dimensionalized
 form. The appendix provides some of the details about this conversion. For large cell
 radii, we have the following analogue of Theorem 2.3.

 THEOREM 2.4. Let di denote the parameters of the well-mixed model, A,,,2 the
 dimensioned parameters of the diffusion model, and suppose that 11 = d3R and P*i2 =
 a4R with the constants 13, a*, and ,i fixedfrom the dimensionalizedform of (2.1). When
 R -> +oo, there exists a constant M > 0 such that if R > M, all solutions A, which satisfy
 the characteristic equation of the dimensionalized system, have real parts less than zero.
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 Heuristically, in Theorem 2.3 we are examining the case where low diffusivity

 does not allow sufficient diffusion of the chemical species into the cytoplasm before

 decay to low concentrations occurs. In Theorem 2.4 the flux rate per unit surface area

 is kept constant. Since the volume increases by a factor of R times the boundary area,
 the chemical species reacting in the cytoplasm are diluted as R increases to the point
 where, for sufficiently large R, the feedback induced oscillations cannot be maintained

 regardless of the value of the delay. Numerical results show a parameter region of
 increasing stability as R -* 0.

 Another result that can be examined with our techniques is the case when oa, the
 ratio of the radius of the nucleus to that of the cell, tends to zero. For this case we

 may assume R = 1. We assume the diffusivities ,ui and the transfer coefficients f,3 and
 ,B* remain fixed. With these assumptions the decrease of oC will mean that the nucleus
 cannot transfer large quantities of mRNA to the cytoplasm which allows a dominance

 of the decay terms and stability of the system. This result is stated in the following
 theorem.

 THEOREM 2.5. Consider the radially symmetric system of equations given by (2.1)

 in three dimensions. Assume that the parameters b2, ,u1, ,U2, Co, f1 and f are fixed.
 Let a = ro/ R, then there exists a critical value o- such that for a < oa the solution of the
 characteristic equation (2.2) have real parts less than zero and the steady state is stable.

 3. Proofs of the theorems. The proofs of our main results are based on some

 preliminary analysis of (2.1) which is similar to our treatment of the one-dimensional
 version of this problem [5]. Before starting this analysis we note that the existence

 and uniqueness of solutions to (1.1) follow either from the reasoning described in [5]
 or from the analysis of a similar problem treated by Pao [20] where the integral over

 the boundary aw does not appear and the terms of (1.1) which involve this integral
 are replaced by al[u2(x, t)-u,(t)] and a2[v2(x, t)-v1(t)]. Since these proofs in the
 present case involve only straightforward technical changes of those of Pao [20], we

 will not present details here. The existence and uniqueness of a radially symmetric
 steady state involves a fairly direct analysis which we omit.

 In (2.1) let u2(r, r) = R(r)T(r) and use the technique of separation of variables.
 For the two-dimensional model we obtain the eigenvalues A, to the Sturm-Liouville
 problem in R(r) by satisfying the equation:

 (3.1) A[J1(Acr) YJ(A) -J1(A) Yl(Acr)] -f31[J1(A) Yo(Ar) -JO(Ao) YJ(A)] = 0

 from which we obtain the normalized eigenfunctions:

 (3.2) On (r) = irA,nV2[ Y, (Akn)JO(Aknr) - J1 (An) YO(Aknr)]
 J@- Yont [4-X2(A2n +n 3 (Jo(lkn.) Yl(Akn)-Jl(Akn) yo(lknoJ)

 We also need the expression for 8n- (O,n, 1) = n (r)r dr which is given by

 (3= TVK2[Jl(Akn) Y1k(An) - Y1(Ak,)J1(Akno)]
 ( [4- c2r2(An + n31)(J0(A,no) Y1(A)-J1(Akn) YO(An,r))2]'2

 In the three-dimensional model we obtain the eigenvalues A, to the Sturm-Liouville
 problem for R(r) by satisfying the equation:

 (3.4)
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 890 S. N. BUSENBERG AND J. M. MAHAFFY

 and the corresponding normalized eigenfunctions are

 (3.5)

 On (r) - ~~2-,--,(An cos An (I 1-r) -sin An (I 1-r) )
 r[(A' + 1)(2A,,(1 -r))-2An +2A, cos 2A, (1 -a)+(A -1) sin 2An(1 (If)]1/2

 Similarly, we compute 8n (),,, 1) = J1 4),,(r)r2 dr which becomes

 (3.6)

 2[(I +k A2 CT) sin An (I - or) -Akn(I -) cos A, (1- or)]

 An 2[(A + 1)(2An (I -u))-2An + 2An cos 2An (I n-)+(- 1) sin 2An(1 - o-)]12

 For both the two- and three-dimensional models we define An= 1+ A 2/ and a, =
 (U20, 4)) where u20(r) is the initial concentration distribution of u2. Then from the
 variation of constants formula we obtain:

 C r T X),,

 U2(r, 7-)- an e- ATO tf(r)- I 5A i?(r) e -A,, --s )SF(s) ds
 n=1 0 n=l

 (3.7)
 AT~

 a, e- On(r) - K (,r s, r)[f(V (v,s-z + YI U2(0., s)] ds,
 n=l 0

 where K(r, r) 5A 8,4,(r) e-A and f(vl,) =f(v1(s - v)+ i1)+ y1us(cr) -(1 + y1)i-
 We evaluate (3.7) at r = a to obtain the following linear Volterra equation in

 U2(cr, r):

 U2(0u,'i= ) a,n e O4n,(oj J K(r s, c)[f(Vis)+ yIu2(U, s)] ds.
 n=l o

 A similar procedure is applied to the v2 equation. We obtain eigenvalues g, from
 the equations:

 (3.8) [J,1(;Fu) Y1(A) -J1(O) YA(CoU)] -f*1[J1(0) Y0(0o) -Jo(;a) Y(0)] = 0
 and

 (3.9)

 ( 20_ + 1 ) sin g( l - a) - o(1- ) cos a(1-c) - ,B *o-(( cOS o( -) - sin C( 1 - 0,)) = O

 for two and three dimensions, respectively. The corresponding normalized eigenfunc-
 tions are given by

 41n(r) - iTn12[ Y, (gn)Jo(;nr) Ji (gn) YO(;nr)]
 5n [4- n YI (;+3)J(n Y(;n) Jl)0(nU))2]1

 and

 2VTn(1 cos gn (1 1-r) -sin gn(1r))
 tnIr[ q2 + 1) (2;n (I - 2r) 2n + 2;n coS 2;n (I 0-) + q2 _1-) sin 24n (I _1-r)]/2

 We define S*n = (frn, 1) similarly to the manner in which 8n was defined, and thus it is
 easy to obtain the values for 8* by (3.3) and (3.6) with A,n replaced by C,. Also, we

 define Bn = b2 + n/q12 and a* = (v20, 'n), where v20(r) is the initial concentration distri-
 bution of v2. Then as before the variation of constants formula gives

 v2(r, r) n c neB,,(r)+ I 8* a* e- n (-slfr(r)[coui(s) - Y2v2(o, s)] ds
 +nc={ 0 n el

 + CO I (U:2( * S), 4ln ( * )e- B,Ts (Pn (r) ds.
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 When r = c, then

 v2(o-, r) = E aE* e-B,?fn(o)+IJ K*(r-s, r)[c0u1(s)-y2v2(o-, s)] ds
 0 0

 +cojr (u2(,S) )nCOn()S e Y2V0 Sn()dds.
 n O=n=l

 where K*(r, r)--t 8* e BTfn(r), (x, y) x ()y (e) '- d6, and n equals the
 dimension of the problem. This is a linear Volterra equation in v2(o, r).

 Combining the above information, we obtain the reduced system of equations
 which incorporates diffusion as a distributed delay and is given by

 u (T) =f(vl(r-V))-U1(T) + Y1U2(0, r),

 v (r) = -b2vI(r) + Y2V2(A, r),

 00 _AT

 U2(0o 7-)= ) a. e O k(Or-) K(r-s, (r)[f(V1(S-V))+ Y1U2(0, S)] ds,
 n=l O

 00

 n 0 V2(o-, T) = E CY* e n ,(o.) + K*(r-s, oj[c0u1(s)- y2v2(o- s)] ds
 n=l JO

 T 0O)

 + cO 2 eB B )(i-s) 0(j(U( S), ifr(' )) ds
 O n-1I

 To proceed with the local stability analysis, we linearize the above system, which
 becomes

 u'(r) =f (I)vI(r- v) - u1(r)+ Y1u2(0, T),

 vl(r) - -b2vI(T) + Y2V2(0", r),

 00T

 u2 (0, 'r) = a. e On ?)(0f) K(T- -S, -)[f (fj) VI (T-V) + 'Yl U2(0, s)] ds,
 n=l 0

 v2(0 r)- a a* e-B"Ir4n(0 J K*(Tr-s, s)[cu1(s)-y2v2(o, S)] ds n=l O

 + CO Y., e 41-(0')(U2( 'S5), lOn( )) ds.
 O n=l

 As in the one-dimensional case, we must find the limiting Volterra equations to study
 the local stability of the system. One can show that

 00 00

 lim e e" (a)n()=lim E a* e Tr-*000an 7*0 n 'n T?)n- TCI n=I

 The analysis for the two- and three-dimensional cases is identical to that found in [5],
 from which the limiting linear system of delay differential equations and Volterra
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 equations is written:

 U'('r) =P!U(Vl)U(r_ )-Ul('T) + 7U2(0, T),

 v'(r) -b2vI(r) + y2V2(o, r),
 r0

 (3.10) U2( T)=-j K(-s, r)[fs(ol)[f'()vi(s -)+YIu2(-, s)]ds,
 0

 V2(, r) =f [K*(r - s, o)[couj(s) - y2v2(o-, s)]
 0~~~~~~~~~~~~~~0

 -C0[P1(UI)VI(S-^)+ Y12(0r,S)] E -7(n( rs) ds,
 n=1 In ( 0 'K (s- cf(t31v( ) yu(, ) ((-) s

 where Xn(s) - ln(u) Js e7Bnt(K(5 - t On ) fr( )) dt. From (3.10) we can write the charac-
 teristic matrix whose determinant can be expanded to give (2.2). This characteristic

 equation is similar to the one in [5], so again we may interchange the summation and

 integration to obtain

 K(s, a) e-' ds = E k0n? (cf) e-'ns e -As ds I 6nO)n (()
 o d n=[ n=l A+An

 K*(s, o-) e As ds = n n ( )
 Jo n= A+ Bn

 I 3rn (s) e A's ds- =( Ekrn,(frn) 0 n-l n=l m=I (A +Am)(A +Bn)

 We multiply the characteristic equation by (A + A1) and (A + B1), and obtain the

 following:

 (A+1)[A+l+AI/1+Yvi8&1+()+vI E 2
 n-2 A + I + Anl

 n=~~~~~2 ~
 (A + ,bI) [A + b\A+ V F/,u 2 + L2.**,/(\J) + y . n qln ( o) (A + b2+i,2)1 n=2 A+b2+ nJ2

 -(AY2 +1(A +1+) e [)( A +b1 +A, , ) [ Z 1 m, ( ) + ' A + b + f I =a.

 -n=1+,,(y m (A +1 +A* i 4)(A +b2+;2. )]

 When f =f,3i, An = 4n(C) =n(oA and (m, lfrn)8mn, the Kronecker delta, the
 characteristic equation can be written in the simpler form

 ( A +1 ) e (A + 1 + A 16 OU-+) 6 1(?) Y + 1 + ^ 2^ (A+1iA+1+A2+8A~()+ nkn(U2(A +b2+A /ki
 C2 J+1A~t J.

 -(A1)A++AIijF 2b2 cc 82'))( +b2+ t)1

 (3.11) (A+b2)IA+b2+A11i2+y24n1+=(Aj+y2 A A+b2+An,
 nn(A + +A b2+A2

 n == n 2.\s .1l cc 8~4'~ (u)A1( cc1?A c1)(A?b?j2
 nOn 2 + A 1=02
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 In the proofs of both Theorems 2.1 and 2.3 a detailed examination of the quantity

 8no,j(o-) for the two and three dimensions is needed. In the proofs of each of the
 theorems we write only the case when 81 =,3* though the proof extends to the more
 general case. For the two-dimensional case with (3.2) and (3.3)

 27T20rA' [j (A,) YJ(AnO.)- Y1Gkn)J1(An(T)][J0Gkn(T) YJAn) - JI(An) YO(Ano.)]

 n n [4- _2-2(A +n3 )[Jo(Aknc) Yl(Akn)-J1(Akn) Yo(Akn()]2]

 With the eigenvalue equation (3.1) we can write

 (3.12) 8,n4,,(-) = 2&crI3p ]2 ,72,k '8) ( 3.12 )~( 4/ [Jl ( Ak,) Y0( Ana_ )-Y, (An )J0 (kAna ]2) _ a2 1T I +,3

 The eigenvalues An asymptotically approach (n - 1)IT/(I - o-) [3, p. 303] with An>
 (n - 1)i7r/(1 - o-). For n sufficiently large, hence An and A,o- large, we use the asymptotic
 approximations of the Bessel functions given by

 Jn (x) = 27x cos (x - ir/4- n r/2),

 Yn (x) 2/r~x sin (x - I/ 4 - n7T/2).

 It is important to note that these asymptotic approximations depend only on n and
 o-. From (3.1) with A large and the above asymptotic approximations for the Bessel
 functions, we obtain

 A[(2/irAv&o)[cos (Acr-3IT/4) sin (A -3ir/4)-cos (A -3iT/4) sin (Ao,-37r/4)]]

 ,81[(2/iTAk/a)[cos (A-3X/4) sin (Ao--7T/4)-cos (Ao-k-/4) sin (A -31V/4)]],

 which is equivalent to

 (3.13) A/31 = cot [A(1-o-)].

 Equation (3.13) is similar to the eigenvalue equation for the one-dimensional case (see
 [5]). With these approximations which are independent of 8,3, we can show

 [J1GAn) Y0Gkn0_) -Yi(An)J0Gkn) ]2 - 42A COS2[Ikn 0 - 0)

 Using (3.13) we find cos2[An(1-o)]znA /(A ,+/32). Now substituting these approxi-
 mations into the expression for 854n(or), we obtain

 (3.14) 5n n(')-(A2 +32)(12-(I

 Similar computations are performed for the three-dimensional case. Using (3.5)
 and (3.6), we find that

 86An(O) =

 4[ (I + A 2 0,) sin Akn (1 -(J) -An (1-cr) COS Akn ( 1-(J)]I[An COS Akn ( 1- a) -sin An (1- ') I

 An[(A n + 1)(2A( - 1-)) -2An + 2An cos 2A4(1 --)+ (An -1) sin 2An(1 -cr)]

 We can use the eigenvalue equation (3.4) to eliminate the trigonometric functions from

 the expression for k,n(o-). After some algebraic manipulations one obtains

 (3.15)

 2I3Uo2(1 + A2)

 ) ( /)3AB 1-o2[A (1-q) - o]+,18o[(2-oJ)A2 -o]+(1-or)A2(1 +- +o2+A2,&)
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 With these preliminary computations we are ready to proceed with the proofs of

 our theorems. We begin with the proof of Theorem 2.1. The assumption that Sl3ul is
 finite with ,u -> oo implies ,3, - 0. With this in mind, we examine the eigenvalue equations
 (3.1) and (3.4). In (3.1) when series expansions are used for JO(z) = 1 + C(Z2), J1(z) -
 (z/2) + C(z3), Yo(z) = (2/r) ln (z/2) + C(1), and Y1(z) = -(2/z7) + C(z ln (z)) we see

 that for Al near zero 81 = [(1 -)A/2ko] + C(A3). In (3.4) when series expansions are
 used for sine and cosine near zero we obtain /31 =[(1 - o-)A2/3o-2]+C(A4).

 For two dimensions we can use the above order arguments in (3.12) to show that

 as A I - oo, 83I -*0 , and A1 - 0, then limA,O I 14(a-) = 1. In three dimensions we substitute

 the expansion of/,3 in powers of An into (3.15) and again we find that limA,,0 81/l(o) = I
 from the order arguments.

 It remains to show that the infinite sums from n = 2 to n = oo all tend to zero as

 00* c, i - 1 2. For the two-dimensional case the approximation in (3.14) is only valid
 for n _ N(cr) a fixed positive number. To handle the expression with the Bessel
 functions for n ' N, we need another result. As this result will be used in the subsequent
 theorems, a lemma is presented for the dimensionalized two-compartment model. For
 more information on the change of coordinates and the definitions of the dimensioned

 A A A

 variables $n, f31 and 4,, see the appendix.
 LEMMA 3.1. For the two-dimensional model in dimensionalized coordinates, given

 an N, there exists M(N)>0, such that

 >n(RC)l 021 M(N U +Rc2r , n =2, ,N.

 Proof. For notational convenience we shall drop the in the proof of this lemma.
 We consider the Prufer transformation [3, p. 228],

 P(r) = (2+r r2[ ?),]2)1/2 > Os 0(r) =arctan(On/rOn),

 where the normalized 4n(r) satisfy Bessel's equation, d/dr[r4'(r)]+A 2 r4n(r) = 0,
 with boundary conditions 44n(Ro-) = ,814n(Rcr) and 4'K(R) = 0 in our cellular model.
 It can be shown that

 P'=-(A 2r- 1/r)P sin 0 cos 0, Ro_ r R.

 Clearly, P'? -A2rP for this model which implies

 P(r) - P(Ro-) exp [-A 2R2/2].

 From the definition of P(Ru) we obtain

 P(r) 1 kkn(Ro)I(1 + R2.2p312)1/2 exp [-A2R2/2].

 With ('/, ) J 1f(r)7q(r)r dr,

 (P P) ' I4 (R R)I2(1 + R 82f31)[R2(1 - u2)/2] exp [-A R2].

 However, (P, P) =(On, On) + (rWn, rf.)_ 1 + R2(4', 4'), as Ro- r _ R. From the
 Sturm-Liouville problem,

 R

 i n[(rn')'+A2nrn] dr= -R( f+n(RAr) ,(Ra)-(O' O') =,

 which implies

This content downloaded from 146.244.227.160 on Fri, 17 May 2024 19:05:05 +00:00
All use subject to https://about.jstor.org/terms



 EFFECTS OF SIZE FOR A COMPARTMENTAL MODEL 895

 Combining these results we obtain

 (1+R2A 2 ) exp [Ak2 R2]

 which forms a bound on I4n(Ru)l depending on An , 38, R, and ar. Furthermore,
 rR

 f [(rf1)'+ Ak2r4ln] dr =-Ra/' (Rr) + A2 n = 0;
 Ro-

 hence,

 ( RX 2 o (Ro)/A2 _ 2R81(1 + R2A2) exp [A2 R2]
 n n -~R 2A2 (1 - Cr2) (I + R 2o-2I82)

 As (n - 1) ir < RAn (1 - o) < niir, for n = 2, - - *, N, there exists a constant M (N) such
 that

 SnOn Ro-) M(N)Roj31
 8fl4fl(Rui-(1-2)(1 + R%2f232)'

 which completes the proof of the lemma.

 A comment is appropriate at this point. One can readily see that as f1 -* 0, the
 Sturm-Liouville problem is approaching a Neumann problem and the first eigenvalue,
 A1 --0. On the other hand, as f3 -oao, the Sturm-Liouville problem is approaching a
 Dirichlet problem and RA I (1 - a) - Ir/2. In the proof of the lemma, the constant M( N)
 used the idea that the eigenvalues Aj for i _ 2 are bounded away from zero. It is clear
 that if f3 E, R-' ?, and o- fixed for some fixed ? > 0, then Al is bounded away from
 zero and Lemma 3.1 holds for n = 1.

 From the eigenvalue equation (3.4) for the three-dimensional case, one can write
 the following expression:

 (3.16) cot [An (1 -)] = A ( + 1 + )o
 As in the two-dimensional case which has its eigenvalues approximated by (3.13), we
 find that the solutions An to (3.16) are such that An -(n-1)i1/(1-oa) as n-oo with
 An > (n - 1)Xr/(1 - o-) for all n. For the three-dimensional case we see from (3.15) that

 (.)UJ 0 ( 1-_jAk2 (1I + ur + o-2 +A 2r2) <(1- )A (n2 1)2r2'-

 Similarly, in two dimensions if n ? N for some N independent of f,3, we can use
 (3.14) to show that

 (3.18) n0n (4). < (I 2 <o2)A 81 (n - 1)2

 For n = 2, - * *, N, we apply Lemma 3.1 with R = 1, cr fixed, and 8, small to see that
 I 86n4(n-)I < M1f31 for some constant M1(N, a). Now with inequalities (3.17) and (3.18),
 whenever Re A > max {-1, -b2},

 |" 5 n(n(0_)(A 1l-,41) E, a E I +,k2 <Z I8O (u) I n=2 A+1+A n I n=2
 N-1 I

 = I I6nOn (4f)I+ E I5,0n(kr)I
 n=2 n=N

 _ ~~~~~0231 (I1 -u) -' -(N-1)M j,8j+ nL n1)2, 2
 n=N

 Mf31
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 A

 for some constant M(N, o-). Note that N =2 for the three-dimensional case. The
 second infinite sum in (3.11) is handled identically. For the third infinite sum we see that

 X nO (o()A (A+1+A )(A+b2+A 1A2) 2
 ( ~ A + I + A 2 A 2 1 E lSnOn(Gr)l n=2 (An+1+ AIl)(A + b2+ A nH2) n=2

 C 1 + 1 + A2gl|Mj ""I

 In each of these cases the infinite sum is bounded by a constant multiplied by 3,B;
 hence, as 83i -- 0, the infinite sum vanishes. As 8 1 (of) -> I for 31 - ->0, it is easily seen
 that in the limit (3.11) approaches (2.3) with yi = a,, i =1, 2, A2Al - a3 and A2=A2= a4,
 which completes the proof of the theorem.

 Proof of Theorem 2.3. As in Theorem 2.1, we consider only the case when i31 = ,l*.
 The other case is analogous. When f,3 = J31 we can write (3.11) as follows:

 (3.19) (A + 1)(A + b2)(1 + YISi)(O + Y2S2) = cOy2f (i3) eAzT[S2 - (A + 1)S3],

 where

 0c 8n4n (O-) cc Sn (a)
 nS = A+Z I+Al '2 n=1 A+b A

 00~~~aX (Or)
 S = E ,,

 Since we are concerned with solutions A of (3.19) with real parts greater than zero,
 again it suffices to consider only Re A > max {-1, b2}.

 We begin by estimating the sums Si, i - 1, 2, 3. Let A = + iq, with e >
 max {-1, -b2}, and use An _ (n - 1)X/(1 - o-) and ,i = ai+2/f3I = -k y/p,81(1 _ Sk), where
 k =2 or 3, depending on the dimension of the problem. The first sum is estimated as
 follows:

 1 0 cc O I1(oU) I
 (3.20) I1 11 5I [I +-C2 _j)21i6j]

 where C2 = [r2o.ky1I/[(l - u)2(1 - ork)(f + 1)]. In this proof, we must show that
 n1n(?)l is C(1/81) for all values of n.

 In two dimensions the approximation in (3.14) holds for n : N for some N
 independent of BI3 . Thus 1I8nOn(o)I < 2/[i3j(1 - cr)], for n -- N. In three dimensions with
 (3.15) we can easily show that for n ?-2, Sn n, (aJ)I < 3/[I31 a(I - a)] with the fact that
 An(I - o-) > 7r. Let R = 1 and fix a-, then the result of Lemma 3.1 for 8, large shows
 that 8_n1n(o-)l '-M1/18 for some MJ(N, cr) and 2_ n N. By the comment following
 Lemma 3.1, ifp1 _ 1, then we have I8S41)(ojI | M1//16 forsome M(N, o) and 1 n n c N.
 Also, using that comment about Al being bounded away from zero, we can use (3.15)
 to show that in three dimensions j50j(cr)oI ? M2/,83 for some M2. Let M =
 max {M1, M2, 3 /(1 -oa}. It follows that (3.20) can be written

 iS,|- (< )[X [1 +C2(n_1)2/pl]]
 (3.21)

 vm TM 2C(f+1),l31/2].

 From (3.21) we see that ISIl - C(i/p}3/2). Similar computations can be used on IS21 and
 IS31 to show that they are 6(1//31/2).
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 We next note that if f'(iD1) remains bounded as /,3 -+ o (or equivalently, ,i -> 0),
 then it is easily seen that the left-hand side of (3.19) remains bounded away from zero
 and the right-hand side of the equation tends to zero. Thus, no solutions A exist with

 Re A > max { 1, -b2} which satisfy (3.19). This excludes the possibility that the linear-

 ized system (3.10) is unstable. Since f(v,) is taken to be 1/[1 + k(v1)P] in our model,
 f'(iU,) is clearly bounded independent of i1 _ 0. This completes the proof of the theorem.

 Proof of Theorem 2.4. We examine only the case when f = /3*. To show this result
 we need to repeat the process used to transform the dimensionless system (2.1) into
 the reduced system of delay differential equations and Volterra equations in (3.10)
 without the normalization of cell size, i.e., omit the change of variable r=x/R. In
 keeping with the notation used in the appendix we use over the dimensionalized

 parameters. (Note that without loss of generality we can leave the time change r = b1 t.)
 The principal change in (2.1) is to replace the boundary evaluations at of by Ra and
 at 1 by R.

 The eigenvalue equations (3.1) and (3.4) are transformed by substituting 813R for
 ,31 and kAR for An. Obviously, there are corresponding changes in (3.8) and (3.9). We
 find ?n and 4,(Ro), and replace an and 4,j() in (3.2), (3.3), (3.5), and (3.6) with
 similar substitutions. With these changes we can write (3.19) in the form:

 (A + 1)(A + b2)[1 + ( A1S1/Rk 1)][1 + (A2S2/Rk1)]
 (3.22)2)I 'Y22R

 =O ^%(9/Rk l)f'(3) e Av[S2-(A + 1)Sj,

 where k is the dimension of the system,

 A 2A , S-Z AA co k0n(Rar) 00 ?nA(Rcr)
 n =l A + 1 +AkngUl nl A + b2 + 'A22

 84ntn (Rcr)
 S3= E (+1+ 2 A )(k+b +A~2 A

 As in the proof of Theorem 2.3, we must estimate the sums Si, i= 1, 2, 3. To
 accomplish this we must evaluate 8n4n(Ro-) for the two- and three-dimensional cases.
 From the results of the appendix we can write

 (3.23) 5,,n0n (Rcr) =2 2/31RuiAr22
 (4/I[ Yl(AnR)J0(A nRo)-J1(AnR) Y0('nRa)]2) - R2fr2(,B, + A 2)7

 for the two-dimensional model in dimensioned variables and

 (3.24)

 A A ( R ) 2 13Ru2(1 + R 2)

 f(o R2o2[ 2 R2(1 - o) _ o] + /3Rcr[(2 -o)2 2- o]

 +(1-_O)kR2( 21+o_+o-2+ 2R20_),

 for the three-dimensional model in dimensioned variables. In a manner similar to our
 handling of the dimensionless system, we use the asymptotic approximations for the

 Bessel functions and find A/,8 Icot [RA (1 - o)] becomes the equivalent of (3.13) in
 the dimensioned form of the eigenvalue equation. From this we can show

 [JX(.nR) Y(X,nRo-) - YX(nR)JO(,nRo-) - 2 cos2 [A,,R(1 -o-)].
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 With the approximation for the eigenvalue equation we see that for n sufficiently large,

 cos2 [i R(1- A)] /(A +I3P). With this approximation we obtain the following
 approximate expression for (3.23):

 (3.25) 8fE(RoJ) - A 2R1 A1

 Similar to our previous analysis we note that the quantity Rk (I - a) asymptotically

 approaches (n - 1) ir with RA"(n 1 - o-)> (n - 1)i, hence our approximations above
 depend only on n and not R. With this information it is easy to see that for n - N for

 some N, (3.25) is an expression which is C(R) for small R and C(1/R) for large R.
 Equation (3.24) is clearly C(R) for small R and C(1/R) for large R for n '2. In

 the two-dimensional model for 2 ' n _ N, Lemma 3.1 shows that 83nOn(Ror)j is C(R)
 for small R and C(1/R) for large R.

 For large R and PI1 and a- fixed the comment after Lemma 3.1 applies. This implies
 that J31fr1(Roa)j is C(1/R) in two dimensions. Similarly, X1R is bounded away from
 zero in three dimensions, so (3.24) shows 18,?b(Roa)I is C(1/R) in three dimensions.
 With this information we see that in either two or three dimensions I8n4n(Ra) _ M/R
 for some constant M, n _ 1

 We return to the estimates of the sums Si in (3.22). Let A =+ ir, with e>
 max {-1, -b2}. For fixed i1i and with Rkn ' (n - 1)ir/(1 - cr), A,Ai is C(1/R2). With
 this information and the bound on 5n0n(Ro)I from above, we can make the following
 estimate for large R:

 nSs]- 1 +[K (n - I)2R]
 for some constants M and K. The integral test is applied to this infinite sum, and we

 obtain S, is C(1). From the appendix we see that y- = alRk- and by assumption
 a3 = I3 I1/R, which implies 'I is C(Rk2). By making an order argument with the terms
 Si and Ai in (3.22), it is easily seen that as R -> oo, the left-hand side of the equation
 is C(1) while the right-hand side of the equation is C(1/R). Hence, there are no
 solutions A with Re A > max {-1, -b2}, i.e., the system is locally asymptotically stable.
 This completes the proof of Theorem 2.4

 Proof of Theorem 2.5. We only prove this result for the three-dimensional case to
 avoid the details necessary to handle the Bessel functions for two dimensions. A
 comment following the proof provides a heuristic argument for why this result should
 work in two dimensions as well. As in our previous theorems we must examine 8"O4 (O.)
 From (3.15) we can readily see that for n ?2:

 O. n(O-( r) |( n 1 ) 27T2*

 For n = 1 we apply a Maclaurin series expansion to (3.4) to obtain

 A2 = 3,831 o2 + e(a3).

 With this estimate in (3.15) we see that as cr-0, 8141(a) - 1. These estimates can be
 used in the infinite sums in (3.11) in a manner similar to our proofs of the previous
 theorems.

 From the appendix we find yi = gjP I k/l. From the above we have estimates on
 the infinite sums in (3.19), which is another expression for (3.11). If we divide both
 sides of (3.19) by YIY2, then we can easily see that for Re(A)>max{-1, -b2} the
 left-hand side of the resulting equation is C(1) while the right-hand side is C(a'). Thus,
 for small af no solutions exist with Re (A) > max {-1, -b,} which satisfy (3.19), so the
 linearized system (3.10) is stable.
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 With the parameters Iii, 131, and /* fixed in the system of equations, as - -* 0, the
 problem is approaching the singular problem which behaves more like a Neumann

 problem. This implies that the system of equations is acting like there is one insulated
 compartment with decay which will be a stable situation. From this heuristic argument
 one would anticipate the two-dimensional model to behave similarly. The proof was
 not attempted for the two-dimensional case as the trigonometric approximations to
 the Bessel functions are not uniform in o- which prevents the use of the approximation
 (3.14) and Lemma 3.1 which we used in our other proofs.

 4. Numerical computation of the bifurcation curves. The numerical computation

 of the bifurcation curves separating the region where the steady-state solution is stable
 from that where a periodic solution exists is based on calculating zeros of the characteris-
 tic polynomials (2.3) and (3.19). Since we are interested in the three-dimensional model

 with radial symmetry, the eigenvalues, A,, the eigenfunctions, on , and the An are given
 by (3.4), (3.5), and (3.6), respectively. Numerically, the An are computed by using a
 bisection method to localize them, then a secant method is used to refine their values

 to the desired accuracy. Once this is done, the sums SI, S2, and S3 in (3.19) can be
 computed. There remains to compute f'(i31) to complete the calculations of the

 coefficients of (3.19), where v-1 is the steady-state value of '3j. This is done by using a
 Newton method on a nonlinear equation satisfied by iF,. The equation satisfied by P1
 is obtained by an elementary but tedious reduction of the system (1.1) with its time
 derivatives set equal to zero. Once all of these coefficients have been computed, the
 critical eigenvalues A = iw), w real, which define the bifurcation curve are computed.
 The method followed is described by Mahaffy [16] and uses a special form of the
 argument principle.

 Numerical results illustrating Theorems 2.4 and 2.5 for large diffusivities (Theorem
 2.1), as shown in Figs. 1.2 and 1.3, are discussed in the Introduction and are based
 on (2.3). In Fig. 4.1, we show the variation of the bifurcation curve with respect to the
 delay and the diffusion coefficient. It is clear that as the diffusion coefficient tends to

 infinity, the critical delay approaches the value of the critical delay of the well-mixed
 model, illustrating Theorem 2.2. Figure 4.1 does not illustrate the result of Theorem
 2.3 as clearly, since the value of the diffusion coefficient below which stability occurs
 regardless of the delay is extremely small; however, the curve does demonstrate the
 increase in the critical delay as the diffusivity tends to zero.

 Finally, in Fig. 4.2 we show the variation of the critical period at the Hopf
 bifurcation. This period is plotted against the cell diameter (also shown is the critical
 delay for comparison). Observe that the period varies markedly with the cell diameter.
 This allows for the possibility that the variation in frequency could play a role in the
 triggering mechanism.

 Appendix. Comparing the parameters. In this section we compare the different
 parameters for the two-compartment model with diffusion in dimensional and
 dimensionless form and contrast the parameters in these models with the parameters
 in the well-mixed two-compartment model. The well-mixed model developed in
 Mahaffy and Pao [17] is given by the following system of equations:

 ut(t) =f(v1t) - bluj(t)+ 1[U2(t) - UJOI,

 (A.1) vl(0 = -b2VI(t) + AVA0 VIM],

 u'(t) = -b1u2(t) + dA3[u(t) -U2(
 V2(t) = Cu?, - b2v2(t) + a4[v1(t) - V2(t)
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 FIG. 4.1. Dependence of the stability region on the difusion rate and the delay.
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 FIG. 4.2. Variation of the period with the cell diameter at the bifurcation boundary.

 and is shown to have the following characteristic equation:

 (A + 1)(A + b2)(A + I + alI + a3)(A + b2 + ti2 + ii4) - Oa2Af'0(v]) e =0,

 where we scale so that b1 = 1 and assume a discrete delay z' as before. For clarity of
 argument, the parameters for the well-mixed model will all have over them. The

 dimensional two-compartment model with diffusion will have over its parameters,
 and the dimensionless two-compartment model's parameters will have no special

This content downloaded from 146.244.227.160 on Fri, 17 May 2024 19:05:05 +00:00
All use subject to https://about.jstor.org/terms



 EFFECTS OF SIZE FOR A COMPARTMENTAL MODEL 901

 markings. To transform system (1.1) into the dimensionless form (2.1), the dimension-

 less variables r = tbl, ai d iRk /bl, c b= c0/bl, Ui = fi/blR2, r = x/R, f31 = Ro3l, and
 ,8* = R83* are introduced, where k = 2 or 3 is the dimension of the system. By integrating
 around aw in the symmetric two- and three-dimensional cases, where the inner radius

 is o-R in the dimensioned form of the model, we obtain yi r=o-Rdi in two dimensions
 and -4ir&R2di in three dimensions. For the dimensionless form of the equation,
 we obtain yi 2 vo-ai and yi 4 ro2ai in two and three dimensions, respectively. Thus,

 yi Tibl.
 Next we must relate the parameters of the well-mixed model to the parameters

 in the dimensionless two-compartment model. We begin by using a mass balance

 relationship to relate al to d3. A similar argument will relate a2 to a4. Let Vi be the
 volume of the ith compartment and suppose that V1 = K V2. We use the system
 of (A.1) with no reactions and a conversion from concentration to mass to obtain

 Kad = a3. From the volume ratios in two and three dimensions with the inner radius,

 o-R, and the outer radius, R, we obtain d3=0=o2all/(1 - &) and d3 = o3d1/(1-
 respectively. Since the first equation in (A.1) is related to the first equation in (2.1),
 we have = = bl

 Finally, we perform a mass balance across aw for the dimensioned system (1.1).

 This implies that the net flux into w must equal the term -y1[u2(0, t) - u,(t)]. However,
 the total flux across aw given by

 X r Udr dS = ApX [U2r-UlIdS
 (A.2) Jkd=i u -uI AdS

 = 2(k - 1) ,(oR)k-l, 13J[u2(, t) - u1(01,

 where k =2 or 3 depending on the dimension. To make (A.2) into a change in
 concentration we must divide by the volume of w, which is 2(k - 1)7r(o_R)k/k. It is

 easily seen that y9 = ,LI Ik/ oR.
 Analysis for small R and o-. In ? 3 we needed to show that for small R and ar,

 8A,4(Ro-) tended to one for n = 1 and was C(Ro) for n > 1. Here, Sn = f, R0.(r)q(r) dr
 with q(r) = rk-l where k = 2 or 3 depending on the dimension. To show this result we

 must use the formulae for 8nOn(Ro-) and the equations for finding the eigenvalues.
 For convenience we drop the notation and use A for An. With these conventions we
 have the eigenvalue equation in three dimensions given by

 cot AR(1 - o) = AR - 1 +1+3Ro- AR[(1 -ojT+f31RT]'

 and

 36,0n(Ro')-
 2,31[AR cos AR(1-ua)-sinAR(1 _ -)]2

 A [(A 2R2 + I)AR(l - vr) - 2AR sin2 AR(1 _ o-) + (A 2R2 _ 1) sin AR(1 - a) cos AR(1 - o-)]

 The eigenvalue equation allows us to express 5n0n(Ro-) without any trigonometric
 functions. After some algebraic manipulations we can obtain the following expression
 for 8n4n (Ro-):

 6n0n(Ra) =
 2,81R_2(1 + A2R2)

 (1- _)A2R 2(1 + 0, + r2+ Ak2R2&r2) +,6, Ro[RAk2R2(2 - o) -_ ] + f32R2or2[Ak2R2(1- _) - _]
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 For n > 1, AkR(1 - J) > (n - 1)Tw, so the above expression is easily seen to be C(R) for
 a fixed and R-*0 and is C(&2) for R fixed and ao-0. For n-=1, A1R(1-oa) is small
 for both R and a small. We use the Maclaurin series expansions for sine and cosine
 in the eigenvalue equation and obtain

 (A 2R2 + 1i[AR(1 - r) A- R 3(i- + C(z5)] -AR(I -cr) [I A R (1) + C(Z4)]

 =3 1Rr{AR[1 - (z2)] - [AR(1 - u) - C(Z3)]I.

 where z = AR. This expression can be reduced to the expression

 (A.3) A R 2(1-v= 3,813R[j _- (z2)].

 In the denominator of the expression for 8j41(Ro), we observe that A2R2(1 -U3)-
 ,81Ro-2 is the dominant term for small R and a-. With (A.3) this expression can be
 written as 2,BIRo-2[1 _ C(Z2)]. In the limit as R -> 0, A1R - 0 and it is easily observed
 from the above information that I841(Ro-) -* 1. Also, as a -*0, again AIR -0 and it
 follows that SI41(Ro) -+ 1.

 The arguments are similar for two dimensions. The eigenvalue equation in this
 case is given by

 A [J1(AR) Y1(ARu) - J1(ARa) Y1(AR)] =-J1[JO(ARo) Y1(AR) - J1(AR) Y0(ARo)].

 It can be shown that

 2ir2R/81u[ Y1(AR)Jo(ARcr) - J1(AR) YO(ARcr)]2

 8Un nRo1) =4-R 2o2(3 + A 2)[ Y1 (AR) JO(ARa) - J (AR) Y(ARcr)]R

 We examine the case when n = 1, so A R is small and we can apply the asymptotic

 limits Jo(z)=I+ Y(z2), J1(z)=z/2+&(Z3), YO(z)=(2/ir)In(z/2)+ (z2In(z)), and
 Y = -2/ 7rz + C(z). Using this information in the eigenvalue equation, we find that

 A2R2(1 _ o2) + Y(Z3) = 2,1 o1 + C(Z2 In z)],

 where z = A R. Using these same asymptotic limits, we find that

 21T2R,81a[(2/IrAR) + C(z)]2

 =4 R2o2(232+ A2)[(2/-ZAR) + (Z)]2
 2R91u(r[ 1 + C(z2)]

 A2R2(1 -u2)-R2o2f2l

 It is clear from the information on the eigenvalue equation that in the limit for either
 small R or o, S141 (Ro-) - 1.

 Acknowledgments. The authors thank the referees for the careful reading of the
 manuscript which led to an improved presentation of their work.
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