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1. INTRODUCTION 

Before a typical cell can divide it must double its mass and duplicate its contents so that the new 

daughter cells can contain the components needed for independent growth and eventual division. 

Most of these components are made continuously throughout the cell cycle with the striking 

exception of DNA whose synthesis occurs during a restricted period, the so called S phase, of the 

cell cycle. The S phase is preceded by the G, phase whose time length is the main determinant of 

the length of the cycle [1]. The mechanism that determines the initiation of the Sphase, hence, the 

end and length of the G, phase, is important in setting the reproduction time of the cell but has 
eluded a definitive experimental determination. Consequently, a number of models have been 

proposed to explain this mechanism (see Winfree [2, Chap. 13] for a stimulating review, and Alberts 

et al. [1, Chap. 11], for a more recent overview). One of the early models of this type, due to 

Goodwin [3, 4], relates the cell cycle time to the period of the epigenetic oscillations that can occur 

in a nonlinear system controlled by negative feedback. This model is based on the well-estabfished 

theory of Jacob and Monod [5] for genetic control of biosynthetic pathways by repression. The 

periods of these epigenetic oscillations have been found to be too short to account for the cell cycle 

(see Banks and Mahaffy [6]), however, the possibility of finding a basis for the triggering of the 

S phase in such a well established biochemical process in the cell is quite appealing. In Busenberg 

and Mahaffy [7] we have presented and analyzed such a model for a possible triggering mechanism. 

Here we shall describe this model, review the results we have obtained in both Refs [7, 8], and give 
some of the analysis and new results that lend support to it. 

Our model is related to Goodwin's [3, 4] in that it is based on the generation of epigenetic 

oscillations due to genetic control by repression. However, unlike Goodwin's proposed mechanism, 

in our model, it is not the periods of these oscillations that determine the cell cycle time. Rather, 

it is an intricate coupling between the size and shape of the growing cell and the biochemical 

reaction-diffusion processes in the cell that determines the initiation of the epigenetic oscillations, 

hence, the $1 phase triggering mechanism. We present the model in its simplest possible version 

where there are just two interacting biochemical species in the process of control by repression since 

the suggested origin of the triggering mechanism is most clearly evident in this setting. This 

simplification is valid because the same triggering mechanism still operates in more realistic cases 

involving long chains of biochemical reactions that lead to end-product control by repression. 

The model we propose considers the eukaryotic cell as a system consisting of two compartments, 
the nucleus and the cytoplasm, where basic biochemical processes occur. In the cytoplasmic 

compartment we assume that the reactants diffuse, while in the smaller nucleus, we assume that 

the reactions occur as in a well-mixed compartment. We consider a two component reaction (say 

mRNA and an end-product repressor) with the repressor production being stimulated by the 
mRNA in the cytoplasm, while the mRNA production in the nucleus is inhibited by the presence 

of the end product repressor. The time delays involved in the processes of transcription and 

translation are included in the model. 

The triggering mechanism that we propose involves the destabilization, caused by the growth 

of the cell of the steady-state concentrations of the two biochemical components leading to 

tTo avoid further delay, this paper has been published without the authors' corrections. 
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Fig. I. The two compartment eukaryotic cell model. 

time-periodic oscillatory concentrations. The peak levels of these oscillating concentrations are 

much higher than the steady-state levels thus possibly triggering either a gradient or a critical level 

sensor in the cell that signals the initiation of DNA synthesis. In fact, we shall show that as the 

cell grows, the reaction-diffusion equations of our two compartment model undergo a change in 

stability which initiates these oscillatory solutions. 
The model we treat is presented in Ref. [7]. The basic equations of the model are given in Refs 

[7, 8] and are based on a generalization of an earlier model for epigenetic oscillations that is derived 

in Mahaffy and Pao [9]. The specific model pictured in Fig. 1 consists of  two separate compartments 

enclosed within the cell wall and separated by a permeable nuclear membrane. 
The first compartment, labeled oJ in the figure, represents the nucleus where mRNA is produced 

in a setting approximating a well-mixed chemical reactor. The second compartment denoted by ~\co 

represents the cytoplasm in which the end-product rcpressor is produced at the randomly dispersed 

ribosomes. The interaction between the two compartments occurs through the processes of 

diffusion in the cytoplasm and transfer proportional to concentration gradients through the 

membrane bounding the nucleus. Let ui and vi, i = l, 2, denote the concentration of  mRNA and 

repressor, respectively, in compartments co for i = 1, and ~\co for i = 2. Then our model takes the 

form shown in the following system of equations: 

ul ( t )  = f ( v l  (t - Vl )) -- bl ul (t) + ~1 .I aco [U2(X , t) -- Ul (t)] dSo,, 

fh ( t )  = - b2 vl ( t )  + ~,_ ~ aco [v2(x, t)  - vj (t)] dS,o, 

au2(x,  t)  
CO t = / h  V2u2( x, t )  - b I u2(x, t) ,  x E f~\co, 

av2(x, t) 
at = Ih V2v2( x,  t )  - b2v2(x, t)  + CoU2(X, t - v2), x ~ \ c o ,  (1.1) 

with boundary conditions 

au2(x'~t""--'----Z" = - f l , [ u 2 ( x ,  t )  -- ut(t)], x e c3co, 
an 

av2(x, t)  
- - =  - f l ~ [ v 2 ( x ,  t ) - v l ( t ) ] ,  x ~aco, 

an 

au2(x, t )  = av2(x, t)  
- - = 0 ,  x ~af~. (1.2) 

an an 

The constants bi are the kinetic rates of decay, ai are the transfer rates between the compartments, 

and co is the rate constant for production of the repressor. All biochemical species are presumed 

to decay at a rate proportional to their concentrations either through degradation or dilution. One 

particular form of the feedback control term that we consider is 1/[1 + kv~(t  - v~ )], where v~ >/0 

represents the delay from transcription, k is a kinetic constant, and p is the Hill coefficient. 

Obviously, this model is an over-simplification of the actual biochemical processes involved in 

repression, yet it satisfies the generic qualities of a negative feedback system. A detailed discussion 

of this type of  repression control model can be found in Banks and Mahaffy [6], Goodwin [4] and 

Tyson [10]. 
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In our model, as the cell grows, equations (1.1) undergo a change of stability. Throughout most 

of the growth part of the cell cycle the biochemical concentrations ut and vt remain at an equilibrium 

level. However, at a critical cell diameter which depends on the various kinetic constants as well 

as on the transcription and translation delays, the equilibrium concentrations become unstable and 

begin oscillating. The oscillating concentrations increase in peak amplitude and trigger either a 

gradient or a critical level sensor in the cell signalling the start of DNA synthesis. This is our 

proposed triggering mechanism for the start of the S phase. 
In order to clearly present the implications of these results on cell timing, we first give the main 

numerical results we have obtained in the special idealized case where the cell and its nucleus are 

spherically shaped, and in the repression term the Hill coefficient p = 4. The restriction to spherical 

shapes was made in order to simplify the computations which are quite time consuming. Further 

work on different shaped cells is currently being done and will be described in Section 3. Figures 

2 and 3 show the curves separating the regions of stable equilibrium concentrations from the 

regions where the oscillatory solutions exists. 

The pertinent three parameters are the volume of the cell, the sum v = v~ + v2 of the transcription 

and translation delays, and the ratio o" of the nuclear diameter to the cell diameter. Consider a fixed 

value of the delay v and of the aspect ratio ~r. As the radius of the cell increases from an initial 

size R0 to a final size R, it crosses the critical size Rc where the oscillatory solutions begin. On further 

growth, the amplitudes of these oscillations increase until at size R, they exceed the threshold levels 

necessary for the triggering of DNA synthesis. At this stage, the cell continues through the rest 

of its cycle, ending up with two daughter cells of initial size R0, and the process starts again for 

each of these daughter cells. This triggering mechanism does not require any contrived forces or 

outside effects and is based on established biochemical and physical processes. It is affected by 

environmental or internal factors that change the growth rate, shape, and the reaction and transfer 

constants of the cell. It is interesting to note that, according to our results, if a cell grows beyond 

a given fixed size yet avoiding the initiation of DNA synthesis, then it returns to a stable 

concentration situation and may not complete its normal division cycle. The reader may wish to 

compare this type of mechanism to two other recently proposed and analyzed mechanism for cell 

cycle control found in Lasota and Mackey [11], Mackey [12] and Air and Tyson [13]. 

In the next section we start with a description of our mathematical analysis of this model and 

a detailed study of the dependence of the critical stability curve when the diffusion rates are varied 

as well as when the cell is viewed as a three-, two- and one-dimensional spatial domain. The models 

of the cell as a two- and one-dimensional domain are of interest since they show some of the effects 

that cell shape can have on the critical stability region. We then present our results on the 

dependence of the critical stability curve on the cell volume. These results form the basis for the 

triggering mechanism that we have presented above. In the final section we discuss extensions 

of the work on the current models as well as more elaborate models that we are currently 
pursuing. 
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Fig. 2. Dependence of the stability region on the cell 
diameter and the delay. 
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Fig. 4. Concentric sphere model of the two-compartment cell. 

2. M A T H E M A T I C A L  A N A L Y S I S  AND R E S U L T S  

In Fig. 4 we depict the simple case of  the model where the cell is spherically symmetric. The model 

as diagrammed in Fig. 4 is derived and analyzed in Ref. [8] and is based on a one-dimensional model 

introduced by Mahaffy and Pao [9]. The first compartment labeled co consists of  the cell nucleus, 

and the second compartment denoted fl\co consists of  the cell interior minus the nucleus. If  u~ and 

v~, i = 1, 2, denote the concentrations of  m R N A  and repressor respectively in the two compart- 

ments, then the repression model is given by the system of equations (1.1) and (1.2). 
To perform a detailed analysis of  this model we examine the specific cases of  one-, two- and 

three-dimensional models with symmetric geometries, such as concentric spheres in the three-di- 

mensional case. The cell radius is given by R and the inner radius is given by r = o R  as shown 

in Fig. 4. A change of  variables is made to make the system of equations (1.1) dimensionless and 

shift the delay into the nonlinear function f only. Furthermore, the unique, radially symmetric, 

steady-state solution (if1, t~l, ul,  v[) is computed for the model, then the system of equations is 

translated about  the steady-state solution in a way that renders the boundary conditions 
homogeneous. With this change of  variables we find that the system of equations (1.1) can be 

written as follows: 

fi(r) = f ( v l  (z -- v) + '51) -- ul ('c ) + ylu2 ( o, 3 ) + yl U~ (a ) -- (1 + Yl)ffl -- FI (u1(¢ ), v l , ,  u2 ( dP, "c ) ), 

~1(T) = - b 2 v l ( ~ )  + ~zv2(a, 3) =- Gl(vl(~), vz(~, ~)), 

Ou2(r, 3) 

Or2 (r, ~) 

O'r = #1 V2u:(  r, z )  - us(r, "r) - ul(z) - Fl(ul( 'r),  (vl , ,  us(a,  "c)), 

--= ~tl V2u2(r, 3) -- u2(r, 3) -- Fz(v1¢ , us(o,  3)), 

c~x = #: V2v2 (r, ~) - b: [v2 (r, ~ ) + v l (3)] + Co [Us (r, ~ ) + u l (z)] - G1 (vl (x), v2 (0, z)) 

-= #2 V2v2( r, 3) - b2v2(r, 3) - G2(ul, us(r, z ), v2(o, z)) ,  

with boundary conditions 

Our(a, 3) ave(a, ~) 
O------V-- = [~lu2(a, ~), 0---7-- = 13*v~(a, 3) 

(2.1) 

and 

0u2(1, 3) = 0v2(1,__3) = 0. 

Or Or 

At this point we have a complicated system of  differential equations. The first two equations are 
delay-differential equations in ul and vl which, in addition to their dependence on ul and v~, depend 

on the values that us and v2 assume on the boundary separating the two compartments. The second 
two equations have become more comphcated by the change of  variables, but they have 
homogeneous boundary conditions. Closer inspection of  the third equation shows that the function 
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F~ depends only on u~ along the boundary and on v~ which is only a time dependent function. This 
suggests the variation of constants technique which we outline below. 

To proceed with the more detailed analysis we utilize the radial symmetry to form a problem 
with separable variables. For the u~ equation we examine the linear problem: 

~U s a--;- ffi/~ vsu~ - u~, 

with boundary conditions 

~us(or, ~) ~u=(1, z) 
~r [~ us(o, ~) = 0 and ~ = 0, 

where 

V 2 = (1/x "-~) ~[r " - t  c3/~r] (~r 

and n = l ,  2 and 3 depending on the dimension of  the system. Considering the spatial part  o f  the 

separable problem we find the eigenvalues and associated eigeafunctions. The eigenvalues `t satisfy: 

cot ( , t )  - `t//~l --  0, 

, t [ ] ,  ( , t o )Y ,  ( , t )  - : ,  ( , t )  r , ( , t o ) ]  - / ~ ,  [~1 ( , t ) r 0 ( , t o )  - : o ( , t o ) r ,  (, t) ]  = 0, 

(,tso + 1)sin ,t(1 - o)  - ,t(1 - o)cos ~(1 - or) - /~lor(`t  cos `t(1 - o)  - sin `t(1 - or)) = 0, (2.2) 

in one, two, and three dimensions, respectively. The corresponding eigenfunctions ~,  are given by: 

dp.(r)= 2x/~" c°s(`t"r) 

x/2,t. + • , sin(2,t.) 

~,tn N//f2r Ti (,tn)'Jo(,tn r ) - J I  ( ,tn) Y0(,t. r)] 
~b.(r) = [4 - or 2~2(`t2 + / ~ )  (]o(,t .o) Y~ (`t.) - J~ (2.) Yo(`tnor))2] I/2' 

2 ~ / ~ . ( ~ ,  cos  ;l.(1 - r) - sin ~.(1 - z ) )  

~b.(r) = r[(2~ + 1) (22 . (1  - o ) )  - 2 2 . +  22.  cos  22 . (1  - o )  + (2 .  ~ - 1)sin 2~ . (1  - o ) ]  *n" (2.3)  

in one, two, and three dimensions, respectively. 

Having found the eigenfunctions to the linear part of the partial differential equation in equations 
(2.1), a variation of constants formula can be used to find the solution u2(r,~). Let  
A. f l + ` t ~ # t , ~ . f f i ( ~ . , 1 ) ,  and a . f (U~o ,~ . ) ,  where u20(r)ffius(r, 0) and ( J ' , g ) f f i S ~ f ( r ) g  

(r )r"-  ~ dr, n being the dimension of the problem. With these definitions, the variation of constants 

formula applied to the us equation in equations (2.1) yields: 

us(r, ~) = ~.e -A." C~n(r ) -- 6ndPn(r)e-A'('-')Fs(s) ds 
n--I n--I 

~ . e - ~ " ¢ . ( r )  - I ' / c ( ~  - s, r)ff(v,(s  - v)) + ~, =s(~, ~)] ds, 
j0 

where K(~, r) ffi XXm 6. ~b. (r)e-S.' and f(Vs (s - v)) = f(vm (s - v) + ~i ) + ?l u~ (o)  - (1 + 7a )~. 
We integrate the above equation along the boundary ca and find a linear Volterra equation for 

us along the boundary of ca which, in the radially symmetric cases that we are examining, reduces 

to the following: 

us(o, ~) = ~ =.e-~"4~.(o) - K(~ - s, o)~(v~ (s - v)) + ~,~ us(o, s)l ds. 

A similar procedure can be applied to the vs equation. If we let ~. and 0.(r) be the eigenvalues 
and eigenfunctions for the linear part of the vs equation and define B .=  bs+ ~a, 6n*--(~., I),  
0~* = (v2o, ~ . )  and K*(x, r ) =  X~_I/~*eS~'~.(x), then the linear Volterra equation for vs can be 

CAMWA 18-I011 |--D 
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found. Combining this information with our equation for uz, we can write the following system 

of delay differential equations and linear Volterra equations: 

Utl (T) =j~(Vl (T -- V)) --  Ul ("~) "Jr- ~1U2(O', '~), 

v~ (z) = --b2vl (z) + 72v2(a, ~), 

Y0 u2(a ,Q= ~ tx.e-A.*¢.(a) - K ( z - s , a ) [ f ( v , ( s - v ) ) + ~ l u 2 ( a , s ) ] d s  
n=l 

v2 (a ,  T) = ~*e-n.~$.(a) + K*(T -- s, o')[CoU 1 (s)  --  ~2v2(¢7, s)] d s  
n=l 

+Co e-n"~'s)~O.(a)<u2(',s),d/.(')>ds. 
n=l 

(2.4) 

The above system of differential equations is significant as its only spatial component in the part 
containing the initial conditions and this part is exponentially damped with increasing time. Thus 
we have reduced a system of delay-partial differential equations to a system of delay differential 
equations and linear Volterra equations which are essentially only time dependent. This naturally 
leads us to the use of techniques for analysis of time dependent equations. We linearize equations 
(2.4) and find the limiting Volterra equations as follows: 

u~ (T) =f'(~,)Vl (~ - v) - u, (O + ~'~ u2(a, O ,  

v'l(z) = --bevl (z) + ~zV2(a, z), 

~0 °° 
u2(a ,  z) = - K ( ~  - s,  (7 ) [ f t (Di )V l (S  - -  V) -~- ~)1U2(0 r, s ) ]ds ,  

~0 °° 
v2(~r, ~) = [K*(~ - s, a)[CoU~ (s)  - ~,2v2(a, s)] 

- c o [ f ' ( ~ ) v ~ ( s  - v )  + ~'~u2(*, s)] ~ ~ ( T  - s)] ds, 
n=l 

(2.5) 

where .~.(s) = d/.(o)S[ e -n.t < K(s - t, . ), d/.(. ) > dt. 
Now, fairly standard methods can be employed to obtain the characteristic equation for 

equations (2.5). For clarity of argument, we shall present only the case when fl~ = fl l*. By expanding 
the 4 x 4 determinant which yields the spectrum of equations (2.5), and integrating out the Volterra 
kernels, the characteristic equation takes the following form: 

(,~ + 1)[,~ + 1 + ~2/'tl + )~'t$1t#'(O) + ~1 n=2 ~ tSnt#n(O)()"~ + 1 "+'~n~i+l + ~2/gl) ].j 

x(2 +b2)I2 + b2 + 221U2 + ~251d~,(a) + ~ 2 .-2~ 6.qb.(o)(2~.~_b~_~22_~# b2 + x2u2)-lj- c 0 v : f  ( v l ) e '  - -~' 

~ 5.d?.(o)2~U,(2 + 1 + ~.~U,)(2 + b: + .~U2)] 
X ~2~'L1($1 ~1(O') "~- . .2 (2 + 1 + 22U,)(2 + be + 22U2) 0 (2.6) 

This characteristic equation is rather complicated, but there are techniques for analyzing this 
equation, as we shall see below. 
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Before proceeding with the analysis we compare the characteristic equation (2.6) to the 

characteristic equation of a related model where the second compartment is well-mixed. This model 

is given by: 

ul ( t )  = f(vm (t - v))  - ut ( t )  + al (u2(t) = ul (t)), 

f:m ( t )  = --b2Vl ( t )  + a2(v2(t) - -  V I (t)) ,  

t~2(t ) ---- --U2(t ) 4" a3(ul (t) -- u2(t)), 

~2(t) = CoU2(t) - b2v2(t) + a4(•l (t) - v2(t)),  (2.7) 

and its characteristic equation can be shown to have the following form: 

(2 + 1)(2 + b2)(2 + 1 + am + a3)(2 + b2 + a2 + a4) - coa2a3f ' (6t )e  -~" = O. (2.8) 

If the infinite sums in equation (2.6) are shown to tend to zero as the diffusivities become large, 

then there is a clear correlation between equations (2.6) and (2.8). In fact one can demonstrate the 

following theorem. 

Theorem 2.1 

Assume that the diffusion rates/zi tend to infinity and Pm/~m and ~* ~ are finite. Consider 2 such 
that Re 2 > max(-1 ,  -b2).  Then, in the limit, the solutions 2 which satisfy the characteristic 

equation (2.6) for the model (2.1) equal the solutions 2 to the characteristic equation (2.8) for the 

well-mixed two compartment model (2.7) with Yi = am, Y2 = a2, ~l/zm -- a3, and/~*/~2 = a4. 

This theorem proves that, as one would expect, the diffusion model has behavior similar to the 

well-mixed model when the diffusivities are large. A more surprising result is that when the 

diffusivities are small there is a region of asymptotic stability. The physical argument for a theorem 

of this type is that if the diffusivity is sufficiently small, then the chemical species cannot diffuse 

far enough into the second compartment and react before the chemical breaks down. The theorem 

describing the result is given by the following. 

Theorem 2.2  

Suppose the ~/tm--a3, ~*/z2 ffi a4, with a3, a4 fixed and suppose that/ t  m ,/t 2 tend to zero. Then 

there exists d > 0 such that if 0 </~l < d, all solutions 2 which satisfy the characteristic equation 

(2.6) have real parts less than zero. 

Details of the proofs of these theorems can be found in Ref. [8]. 
The analysis for a characteristic equation of the form in equation (2.8) has been developed in 

Mahaffy [14]. One can readily see that equation (2.8) can be written in the form: 

P(2) + Q(2)e -~' = 0, (2.9) 

where P(2) is a polynomial with all real negative roots and Q(2) is a constant. It was shown in 

Ref. [14] that if P(0) < Q(0), then there exists a unique critical delay v* for which the differential 

equation from which equation (2.9) was derived loses stability for all v > v*. The method for 

showing this Hopf bifurcation uses the "argument principle" from complex variables. To actually 

compute this bifurcation one simply finds an co* such that le(ico*)l = IQCico*)l 0,y a bisection 

method), then the critical delay is found by the formula: 

rc + arg[Q (ico*)] - arg[P(ico *)] 
v0 = (2.10) 

co* 

The argument employed in Ref. [14] is geometric and can handle perturbations. We treat 

equation (2.6) as a perturbation of the well-mixed case, where functions P(2) and Q(2) are now 
the more complicated expressions involving infinite sums. Still we find an co* by the bisection 

method for which le( co*)l--IQ( co*)l, then the critical delay is given by equation (2.10) for the 

model with diffusion and delays. 
With the technique described above applied to equation (2.6), using the eigenvalues computed 

in equations (2.2) and the eigenfunctions computed in equation (2.3), we can find the critical delay 
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Fig. 5. Dependence of  the stability region on the diffusion rate and the delay. 

versus the diffusivity curve for one, two and three dimensions. These results are presented below 

in Fig. 5. Note that for these computations the diffusivities are taken to all be the same. In addition, 

the other kinetic constants are scaled appropriately so that the mass balance of the different 

dimensions agree with the well-mixed model for a fixed volume ratio of 1:25 for the first 

compartment to the second compartment. 
In Fig. 5 for one dimension, we observe the predicted behavior that, as the diffusivity decreases, 

the time delay necessary to destabilize the system of delay differential-Volterra equations decreases. 

Intuitively, this agrees with the reasoning in MacDonald [15] that diffusion acts as a time delay. 

In fact, the graph shows that for a diffusivity near 0.06 the system becomes unstable without any 

delays in the equations. The graph does not consider diffusivity values sufficiently small for the 

effect of Theorem 2.2 to be seen in one dimension. However, in two and three dimensions the graphs 

are seen to show the opposite effect initially as the diffusivity is decreased. There is some local 

maximum value of the critical delay which is reached before the graphs turn sharply downward 

and give the behavior of an additional delay. This behavior has not been explained to date. The 

curves for two and three dimensions show the beginning of the behavior described in Theorem 2.2 

for very low diffusivities. Numerically, the computations require increasing amounts of computer 

time as the diffusivity decreases since the number of terms in the infinite sums necessary for accurate 

estimates increases. 
We now turn to the two- and three-dimensional models and discuss the result which connects 

cell size with the triggering mechanism. 

Theorem Z3 

For both the two- and three-dimensional model with central symmetry, suppose that Pl/~ = a3 R 

and ~*#~ = a4R. Then there exists a constant M > 0 such that if R > M all solutions of the 

characteristic equation (2.6) have real parts less than zero. 

The result shows that, regardless of the size of the transcription and translation delays, the steady 

state concentrations will be stable for large enough cell radii R > M. The detailed stability 

boundary is determined by numerically solving the characteristic equation in this case and is shown 

in a sample case in Fig. 3. Note that the cut-off values of the cell size above which stability prevails 

are evident in the data plotted in that figure. It is easy to find parameters for which the bifurcation 

curve initially decreases, giving the shape necessary for the proposed triggering mechanism. 
In Theorem 2.8, the flux rate per unit surface area is kept fixed while the cell radius is changing. 

The cell volume increases by a factor R times surface, the transfer rate through the nuclear 

membrane which is proportional to its area becomes relatively small for R large enough and the 

feedback induced oscillations cannot be mainained for such R. 
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The proofs of these results are given in Ref. [7] and are based on a detailed analysis of the 

characteristic equations (2.6) and (2.8) for the two- and three-dimensional models. Note that 
Theorem 2.1 connects the characteristic equations (2.6) and (2.8) when the diffusion rates are large. 
The comparable result for the one-dimensional case is, in effect, identical to Theorem 2.2 since, 
in that case, the area of the nuclear membrane is not related to the size of the cell and changes 

in cell size are equivalent to changes in the diffusion rates. 

3. C O N C L U S I O N S  

The model that we have presented and analyzed for the triggering of the S phase is based on 
the accepted mechanism of biosynthetic control by repression due to Jacob and Monod [5] and 
on simple physical considerations concerning the cell's size, shape and internal organization. The 
use of two distinct compartments in the model is supported both by the physical organization of 
eukaryotic cells and by experimental evidence of the importance of compartments in the cell [16]. 
The mathematical analysis of this model that we have carried out so far indicates that the proposed 
triggering mechanism is in qualitative agreement with the observed behavior of the cell cycle under 

variations of different pertinent parameters. It remains, however, to yet analyze the effects of shape, 
the proximity of other cells which can change the shape of a cell due to mechanical forces, and 
the implications that our proposed mechanism has on the behavior of synchronized populations 
of dividing cells. We are currently pursuing each of these questions by doing either further 

mathematical analysis of extensions of our model or by large scale numerical computations 
whenever the complexity of the model does not allow strict analytical results to be established. 
In particular, for cell shapes that do not have simple geometric symmetries, as did the centrally 

symmetric spherical cells we have discussed in the main body of the paper, we are currently 
performing numerical integrations of the equations of our model for various parameter ranges. This 
numerical work requires considerable computer resources and is being done on a large parallel 
processor (the Cray 1 XMP at the Supercomputer Center in San Diego) with the support of the 
National Science Foundation. As the results of these computations become available we will be 
able to compare division times of cells that are spherically shaped with those that are flattened and 
see how they correlate with available experimental information. We shall also be able to study the 
effects of environmental changes by the addition of external fluxes at the boundary of the outside 
cell wall. We are also developing a mathematical theory for the study of large ensembles of 
synchronized cells each of which is dividing according to the triggering mechanism we have 
proposed. This will allow us to compare the predictions of our model with the available data on 
~-curves and E-curves [1, 11, 12] for such synchronized populations. We also note that the current 
type of compartmental reaction diffusion model can be easily extended to include large chains of 

enzyme catalyzed reactions, other methods of biosynthetic control (positive feedback or induction, 
for example), and more that two compartments. We have already studied some of these extensions 
and our work [8] includes the analysis of a three compartment model. We will pursue these 
extensions if the work on the effects of cell shape variation and on ensembles of synchronized cells 

leads to good agreement with available experimental observations. 
We finally note that the type of compartmental model we have presented here with interactions 

via transfer through the boundaries of the compartments has applications to a variety of 

physiological processes. In particular, there are implications concerning the adequacy of using 
well-mixed compartmental models to describe some of these processes as illustrated by our results 
for the three compartment reaction-diffusion model described in Ref. [8]. Also, as we have shown, 
it is possible to use appropriate time delays to model the effects of spatial diffusion in such models. 
However, the delayed terms are certainly not as simple as was previously thought [15], and depend 
in an intricate way on the parameters of the model as well as on the size and shape of the cell as 
is discussed in Refs [7, 8]. This is an area that we have barely touched upon to date and plan to 

study systematically in the future. 
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