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We ccnsider a Goodwin-type model for cyclic gene systems involving 
endprcduct repression. The model is described by a very general system of 
functic nal differential equations which include as special cases continuous 
analogues of cyclic models studied previously via computer simulation by 
other .nvestigators (Fraser & Tiwari, 1974). We establish global stability 
of equilibrium solutions with arguments which are valid for any number 
(odd a r even) of genes in the cyclic loop. 

1. Introduction 

Since the early work of Goodwin (1963, 1965) a substantial number of 
investigations of theoretical models for protein synthesis have been detailed 
in the lit era&n-e (see the bibliographies in Hess & Boiteux, 1971; Walter, 
1972; Chance, Pye, Ghosh & Hess, 1973; Othmer, 1976; Tyson & Othmer, 
1977; Banks & Mahaffy, 1978a). The central focus of many of these investi- 
gations concerns the existence or non-existence of sustained oscillations for 
the modt:ls considered. One class of models that has received attention is 
based on negative feedback (end product repression) mechanisms such as 
those known to occur in a number of biosynthetic pathways [e.g. see the 
pathways for histidine and tryptophan in Lehninger, (1975)]. In addition to 
developirlg ordinary differential equation models for single gene repressible 
systems, ~Zoodwin in his earlier work suggested that repressible system models 
involving several gene loci coupled in some way might prove of vaIue in the 
study of epigenetic oscillations. Analog computer simulations of some of 
those ea:ly Goodwin models (which contained no damping terms) did 
produce oscillatory behavior. In subsequent efforts Fraser & Tiwari (1974) 
studied a version of the Goodwin models modified to include damping terms 
and time delays (the latter to account for times between transcription and 
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initiation of translation, translation and transport times, etc.). They carried 
out digital computer simulation studies of deterministic cyclic gene models 
with loops of 2,3,4, and 5 genes. On the basis of these simulations, they 
conjectured that “cyclic gene systems with an odd number of genes will show 
undamped oscillation” if certain model parameters are appropriately chosen. 

In this paper, we consider continuous analogues of these cyclic gene 
systems and offer conclusive arguments that these systems (in the case of both 
odd and even numbers of genes) possess unique globally asymptotically 
stable equilibrium states. In fact, we establish these results for a somewhat 
more general class of models which allow for a very general hereditary 
mechanism and which include ordinary differential equation models (no 
delays) and differential-difference equation models (finite discrete delays as 
studied by Fraser & Tiwari) as special cases. While our models entail quite 
general hereditary terms, our arguments employ only very elementary 
(linear differential inequalities) mathematical techniques. 

2. Stability Results for Mathematical Models of Repressible 
Cyclic Gene Systems 

The model which we consider in this paper is a cyclic gene model suggested 
by the earlier investigations of Goodwin (1963, 1965) and Fraser & Tiwari 
(1974). We assume one has n genes which control synthesis of endproducts 
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--)YI,m, 
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FIG. 1. Cyclic gene models with repression. 
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and which are coupled as depicted in Fig. 1. Specifically, we assume in this 
model that the first gene is transcribed producing a mRNA (x1) which in 
turn is translated to produce a protein. This protein is the first enzyme in a 
sequence (of length m,) which produces as endproduct a repressor (Y~,~~). 
This endproduct acts as a repressor to shut down transcription of the second 
gene. When the second gene is transcribed, a mRNA (xJ is produced which 
is translated to form a protein acting as the first enzyme in a sequence (of 
length mJ for the second gene. The resulting endproduct acts as a repressor 
for gene 3, etc. Finally, a similar sequence occurs for the nth gene and results 
in a repressor for gene 1. 

If one considers models in which the mRNA’s are translated to form the 
repressor proteins directly (i.e. the enzyme sequences all have length Wli = 1 
so that yi,mi z yi is the repressor), Goodwin-type models with damping are 
described (with an appropriate scaling of parameters) by ordinary differential 
equations : 

z+(t) = 
ai 

1 +kYi- 1(t) 
- bixi(t) 

J;iCt> = Wdt> - PSiCt)3 i = 2, *..,n. 

If one incorporates discrete delays into this model to take into account the 
time involved in transcription, translation, and transport within the cell, one 
obtains a continuous analogue of the model studied by Fraser & Tiwari (1974) 
using computer simulations. The resulting model is given by differential- 
difference equations : 

2,(t) = 4 
l+~lYn(t-~l) 

- blxi(O 

31(t) = ~,~,(t-Y1)--81Y,(0 

a i (2) 
ai = 

l+kiyi-l(t-TJ 
- bixi(t) 

PiCt) = aixi(t-Yi>7PiYi(t)~ i = 2 , . . ..n. 

However, it is perhaps more accurate to use distributed delay terms instead 
of the discrete delays in equations (2) when modeling such phenomena. Some 
authors (e.g. see Caperon, 1969; MacDonald, 1977) have done this and, 
indeed, the appropriateness of such terms can be argued on the basis of both 
basic modeling principles and evidence obtained when fitting other types of 
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delay-phenomena models to experimental data for enzyme regulated pro- 
cesses in micro-organisms (Caperon, 1969). To modify the model given by 
equations (2) in this way one only replaces each of the discrete delay terms of 
the form z(t- r) by an integral term 

j, z(t-~-@W) de 

which “distributes” the delay over the time interval [t-r, t] via a weighting 
function 5. 

We shall consider a model which includes as special cases the models (l), 
(2) and modifications of (2) using distributed delay terms. The hereditary 
terms are assumed to consist of a finite number of discrete delay terms 
(including as one of these a term for z = 0) plus a distributed term. That is, 
using the notation f to denote the function 0 -+ z(t + 0) for -r 5 8 I 0, our 
hereditary or delay terms have the form 

~(29 = j! z(t+ e) dde) = i ckz(t- hk) + i 2(t+ e) c(e) de (3) 
-r k=O --r 

where 0 = ho < h, < . . . < h, = Y and the constants (ck} are non-negative 
as is the scalar function 5. (In this case the measure ,u consists of a finite 
number of saltus functions plus an absolutely continuous part.) The general 
model which includes (1) and (2) as special cases is given by the hereditary 
(functional) differential equations 

21(t) = a1 
1 +W,W 

- hx1(0, 

)ilW = ~1Gw-B1Y1(0~ 

n,(t) = 
R 

1 + kiLil(yiL 1) 
- bixi(t>, 

J’i(t) = O$f(X3-Biyi(t)p i = 2, , . ., n, 

(4) 

= k$o ch?(-hk) + s” de) bee> de --r (5) 

Appropriate initial data consist of non-negative initial functions Cpo ei so 
that (4) is to be solved for t > 0 subject to xi(Q) = &(e), ~~(6) = Jli(8), 
-rIeSO,i= 1,2 ,..., n. 
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Referring again to Fig. 1, we see that equation (4) corresponds to the 
schematic with wli = 1 for i = 1, . . ., n. We restrict our arguments below to 
this case, but point out that all our arguments and results extend easily and in 
a straightforward manner to the case where the mi are allowed to be arbitrary 
but fixed finite positive integers (see Banks & Mahaffy, 1978b). Our restriction 
here to the case mi = 1 is solely for ease in exposition. 

Let us turn now to a careful analysis of the system (4) where we 
assume that the parameters a,, bi, ki, a, Pi, i = 1, . . ., iz, are positive and 
finite. Since each of the measures p{ in equation (5) is of finite variation we 
may further assume (by a resealing of the ki and aj) that each of these measures 
is a probability measure on [-Y, 01. That is, we may assume without loss of 
generality that L’,(l)= 1. We note that the assumptions in equation (5) yield 
that I$(?,) 2 I$?,) whenever ~~(0) 2 r&)), -r I 13 5 0. 

The main result of this paper is summarized in the following theorem. The 
arguments to establish this stability result are similar in spirit to those used in 
(Banks & Mahaffy, 1978a) in investigations of single gene models. 

Theorem 
The system (4) has a unique equilibrium point Xi, Ji, i = 1, . . ., n, in the 

orthant B = ((x, y) E R” x R”jXi 2 0, yi 2 0, i = 1, . . ., n}. Given any 
continuous initial data (4, $) satisfying (4(e), $(6)) E B, -r I 13 5 0, there 
exists a unique solution (x, y) of equation (4) for all t > 0 which satisfies 
(x(t), y(t)) E B for t > 0. Furthermore, as t -+ co we have x(t) + 5? = (Z,, 
-..,Q,y(t)-+y= (J,, . . . . jQ. 

Given continuous initial data one can establish existence, uniqueness, and 
non-negativity of solutions to equations (4) using quite standard techniques 
{e.g. construction of Picard iterates in the positive cone of continuous “state” 
functions C( [ - r, 01, @), etc.}. Since the details of these rather classical ideas 
are presented in (Banks-Mahaffy, 1978b) for systems which include equations 
(4) as a special case, we shall not repeat the arguments here. 

Equilibrium solutions of (4) will be constants X, jjs i = 1, . . . , ~1, which 
must satisfy [recall L{(Z) = x’ for any constant function Z] 

ai - = b& 
l+klh 

UiXj=figip i==2,...,n. 
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Adopting the convention that X, E 5&,, Jo = j$, a, E a,, PO = /I,,, we may 
re-write these relationships as 

a i 
1 + k$i- 1 

= biRi 
(61 

aiEi = fiiJi> i = 132, * . -3 n, 

where A, B,, Ci are appropriately defined positive constants. 
Thus, using equation (7) and defining appropriately positive constants 

Di,Ei,Fi,Gi,i= l,..., n-l, we find 

21 = Al Al 
B, + Cl?,, = B,+C,[A,/(B,+C,~~-,)l 

D,-l+En-l%,,-l D,-1+E,-1CAn-1/(Bn-1+Cn-15n-2)1 --= 
= F,,-l+G,,-ljzn-l F,-,+G,-,[A,-,/(B,-,+C,-,~~-,)I 

= .*. 

D1 + E,R1 
= F1+G,R1 ’ 

(8) 

Hence, 3, satisfies 
G&+(F, --El)~, -D, = 0 (9) 

which (since D1, El, F,, G1 > 0) has a unique positive real root. It then 
follows from arguments using equations (6) that unique positive solutions 
Fl, %, 82, - * *, E,,, 7” are obtained, yielding the unique positive equilibrium 
solution claimed. 

It remains to consider behavior of solutions as t --f co. Given a fixed 
solution of (4), we shall argue the existence of monotonic sequences of 
positive numbers {Vl),“=l, {VT}&l, {Rr}$l, (Sr}m= 1, i = 1, 2, . . . , n, 
such that Uy 7 ii, Vg \ Zj, Ry 1 Ji, Sr \ Ji, i = 1, 2, . . . , FZ, as PPZ + CO. 
We shall establish that these sequences are such that for any fixed m. there 
exists T,, so that the given solution of (4) satisfies 

lJy I q(t) I Jq 
RF 5 JJi(t) 4 SF, (10) 

forallt>T,,andi= 1,2, . . . . IZ. This then will yield the desired behavior 
for the solution. 



CYCLIC GENE MODELS 329 

In our arguments below, we shall continually make use of the following 
simple differential inequalities (Coppel, 1965, p. 28) : If h(t) I A -&c(t) for 
t 2 z, then o(t) 5 V’(t) for t 2 z, where W is the solution of w(j) = A - 
sW(t), w(z) = o(r). Also, h(t) 2 A---&D(~) for t 2 r implies o(t) 2 w(t) 
for t 2 r, where W is as just defined. We shall also repeatedly employ the 
fact that if m(t) = A-BW(t) and W(r) = W,, then w(t) = A/B+ 
(W,-A/B) e- BW-r) for t 2 z. 

We begin our arguments by considering a fixed solution of equations (4) 
corresponding to fixed non-negative initial data. By our previous comments, 
the solution will exist and remain non-negative for all t 2 0. In our con- 
structive arguments below, in choosing the monotonic sequence {em}, we 
make the choice at each step such that 0 < E, < l/m and hence E, \ 0. 

Let V! be the solution of i = ai-biz, z(0) = xi(O), 1 5 is n. Then, since 
L&f) 2 0, 1 I i 5 IZ, 1 I j I IZ, for all t, we find that i;(t) s ai-bixi(t) 
for t > 0. Thus, our differential inequality implies 

Xi(t) < Of(t) = Ui/bif(Xi(O)-UJbi) evbit, 1 I i 2 y1. 

Hence, choosing s1 with 0 < e1 < 1, there exists tl > 0 such that 

Xi(t) I Vf E ai/bi+E1 for t 2 tl, 1 I i I iz. 
We next let si be the solution for t > t1 + r of i = CQV~ -piz, z(t, +r) = 
yi(t,+r), 1 I, i < n, so that for t 2 t,+r, 

S:(t) = (CCi/jJV,‘+(yi(tl +i”)-(C$/PJVf) e-Bi{r-(rl+r)}, 1 5 i 5 n. 
Choosing tr2 < E~ there exists t2 > t, +r such that 

Sf(t) I IS; E (Mi/pi)V!+&zp 1 d i 2 n, 
for t 2 t, > tl fr. Since xi(t+8) 2 Vi for t+6 2 t,, 1 5 i i; n, we find 
L?(x:) I Vi for t 2 tl fr so that 

ji(t) < &Vi-jiyj(t) for t 2 tlfr, 1 I i < iI. 
Thus, it follows that 

y,(t) I S! for t Z t2 > t,+r, 1 5 i I n. 
We now define u! to be the solution for t 2 t2 +r of 

. % 

z = l+k&-, 
- biz 

ztt2fr) = Xi(tz+r), 1 < i < n, 
where we hereafter adopt the convention that a subscript of zero on any 
quantity is identified with a subscript of n on that quantity; e.g. Sh z Sk. 
Then choosing Ed < s2 so that 

q s ai 

bi[l + kiSil_ 11 
- E3 > 0, 1 < i < n, 
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we have there exists t3 > t,f r so that 

a i 
ui(t) = bJ-1 -I- k&l.- 1-j 

+ ai 
b,[l + k$‘fu I] > 

e-b,(t-(b+rN 

2Uf for t2t,>t2+r, llign. 

Since yi-l(t+@ < sf-, for t+B 2 t,, 1 I i 4 n, we find that 
L:(Y~-I) 5 St-, for t 2 t,+r so that 

5i(t) 2 ai 
1 + kiS;- 1 

- b&t) for t 2 t,+r. 

Thus, we have 

xi(t) 2 Vi for t 2 t3 > t,+r,l I i I n. 

Let r: be the solution of i = a,U:- /Jiz, z(t, + r) = x,(t, +r) so that for s4 
chosen with s4 < eJ and (ai/~i)Uil -Q > 0, there exists t4 > t, + r such that 

r:(t) = (ai/Pi)Ui’ + (Xi(t, + r) -(ai/~i)Uil> e-8i@-@3+r)J 

2 Rf E (ai/Bl)Ut -~q 

for t 2~ t4 > t3+r, 1 I i I n. Since xi(t+6) 2 Ui for t-i-8 2 t3, we have 
ji(t) 2 a,@ -Piyi(t) for t 2 t, -t-r and thus 

yj(t)2Rt for t2t4~t,+r,1~isn. 

Continuing in this procedure, we let $ be the solution of 

. a i 
’ = l+k&-, 

- bizp t 2 t‘$+r, 

204 + r) = q(t4 + r), lIi<?L 

For s5 < e4 chosen there exists t5 > t,+r such that 

t&t) 1 v; E #i 
b,[l + kiR:- 11 

+ Ed for t 2 t5. 

Since yi-l(t+O) 2 Rt-I for t+8 2: t4, we have 1 + k&(yf-I) 2 l+ k,Ril_, 
for t 2 t4+ r. Hence, 

n&) I 
ai 

I + k,Ri’_ I - b&t>, t 2 t,+r 

and thus 
q(t)lVf for t2t,>t4+r. 
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In a similar manner one can continue these arguments to obtain without 
difficulty the existence of sequences es, E, . . . and t6, t,, . , . , such that 

J’i(t) < Sf e (CrJfii)Vf +E6 for t 2 t6 > t5 +r, 

xi(t) 2 rJf E ai 
bi[l + kiSf- 11 

-&,>o for t 2 t7 > t6+r, 

yi(t) 2 R: ~ (ai/~3Uz -~g > 0 for t 2 ts > t,+r, 

, a i 
4tt) 2 vi” s Bill +kjR;-,, + &9 for t2tg>t,fr, 

etc. One thus obtains sequences {tj], {V~}~=l, (S$$r,{U~]~,,, {Ry)z= 1, 
1 5 i < ~1, such that tj < tj+l, the Vr, Sp, Uy, Ry are all positive, and 

Xi(t) I V~ for t 2 t4m-3, 

yj(t) S ST for t 2 t4m-2, 

q(t) 2 uy for t 2 t4m-1, 
(11) 

yi(t) 2 Ry for t 2 thm, 

for m = 1,2, . . . , and 1 I i I n. 
It follows immediately from equations (11) and our constructive argu- 

ments that the statement involving (10) holds. To complete our arguments 
we must demonstrate that Vy \ Xi, Sy \ yi, UT /” Xi, RF /’ Ji, as m --) 00, 

l<i(n. 
If we define Rf = 0, it is easy to see that the following recursive relation- 

ships obtain : 
a i 

” = &[l +,I@~--;] + E4m-3y 
Sr = ($/fij) VT + E4m- 2, 

uy = a i 
bi[l + kiSL 1-J - E4m-1’ 

(12) 

R1 = (ai/Bi)UT-E4m, 
for l<ilnandm=1,2,.... Using these recursive formulae and the 
monotonicity of {E,,,], one can give an easy inductive argument that Vr+l < 
J,7” p+1 <sm um+l ,um Rm+l >RT,l(iln,m=l,2 ,.... Sincethe 
mb;lo:one seq:‘enck { VT],i(S;i, { Uy}, {Rr} are clearly bounded, one obtains 
existence of the limits 

vi = gm q 
m-tco 

Si =limSy 
m-r* 

~j = lim Uy 
m-rco 

& = lim Ry 
m-rco 
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for 1 I i I n. Furthermore, these limits are finite and non-negative. Passing 
to the limits in equations (12), one finds 

vi = ai 

bi[l + kiRi- 11 ’ 

(13) 

for 1 < i 5 n. Recalling equations (6) and (7), one has that equations (13) 
can be used to write 

5, = ailh 4 
l+ki(ai-1/fii-l)Ui-t = Bi+CiOi-, 

and 

vi = ailk 4 
l+kXcli-llSi-1)Vi-l = Bi+CiBi-1 

for 1 < i < n. Hence, defining the positive constants Dip Ei, Fi, Gi as in 
equations (8) and (9), one obtains 

71 = 

= 

= 

where 

x= 

Al 4 
BlSC,U, = B,+C,[A,!(B,fC”~~,_l)] 

. . . 

D, +E,X 

Fl+G,X, 

Vr ifneven 
iJl if n odd. 

By symmetry one also has 
D =4-+-&Y where Y = 

iTl if n even 
I F,SGIY’ 5, if n odd. 

In the case n is even, we thus have that 8,, v1 are non-negative solutions 
of the quadratic 

x _ %+-4X 
F1 + G,X 



CYCLIC GENE MODELS 333 

which [see equations (8) and (9)] yields 8, = V1 = Zr. In the case n is odd 
we have that Vi, Vr are non-negative solutions of the quadratic 

x = D, $-NV’, +GM~I +&XII 
F, + GIL@, +JVOIV’, + GJll 

which, after some simple algebra, reduces to 
(E, +F,){G,X2 +(F, -4,)X--D,) = 0. 

Thus, in light of equation (9), we find in this case also that 0, = V1 = X,. 
Once one has established that U1 = V1 = 5,, it follows immediately from 

equations (13) and (6) that 3, = w, = J,, V2 = Uj, = X2, s, = i?, = 
72, . . . . vn = q = jz,, S, = i?n = J,,. When combined with our previous 
observations and arguments, this finally completes the proof for our theorem. 

3. Conclusions 

We have considered cyclic gene models with repression which include as 
special cases continuous analogues of the cyclic models studied by Fraser & 
Tiwari (1974) via digital simulation. These computer simulations led Fraser 
and Tiwari to conjecture that such cyclic systems with an odd number of 
genes might exhibit oscillatory behavior if certain model parameters were 
carefully chosen. Our analysis shows that continuous analogues of the Fraser- 
Tiwari systems do not differ in their qualitative behavior, regardless of 
whether n is odd or even, and independent of the choice of permissible model 
parameter values. Indeed, for these systems sustained self-oscillations are not 
possible. 

The authors would like to thank a referee for calling to their attention a manu- 
script by Allwright (J. Math. Biol., 1978) in which stability questions for Goodwin 
type models are also considered. Assuming global existence of solutions, it appears 
that the results above may also be obtained using the approach of Allwright which 
is somewhat similar in spirit (but differs in detailed arguments) to those employed 
here and in Banks & Mahaffy (1977u). 
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