Spring Homework 9 Math 531

7.10.1.e. (15 pts) Solve % = V2 inside sphere of radius a, so

@ — 02 ig 2@ + 1 E sin ¢% + 1 @
a2 = \op\" 8p) " 2singds 96) " p2sin2g 002 )
The BC is u(a,d,¢,t) = 0 with ICs u(p,0,$,0) = F(p, ¢) cos(30) and %(p,&,qﬁ, 0) = 0. The

lmphClt BCs are |U(0,9,¢,t>’ < 00, u(ﬂv _W7¢7t) = U(Pﬂﬂ ¢7t)7 %(pa —7T,¢7 t) = %(Pﬂﬁ@bat),
[u(p, 6,0,t)| < oo, and |u(p,8,,1)| < oo.

We apply separation of variables by letting u(p, 0, ¢,t) = h(t)f(p)q(0)g(¢). Initially, we have:

hl/ 2
h_Vf94) = —\, so  h"+EAh=0.

h  fgq

For A > 0, the solution of the t-equation is:

h(t) = Acos (cﬁt) + Bsin (cﬁt) :

Since the initial velocity is zero, %(O) = 0, which implies B = 0, so h(t) = Acos (cﬁt).

The spatial variables give:

ga d ( ,df fq d (. dg fg  d*q
99¢ (29 4 e I N 7 )
p2dp (p dp * p2sin ¢ do qubdd) * p? sin? ¢ d6? +Af9a =0,

so we multiply by p?sin? ¢ and divide by fgq. The result satisfies:

q” sin? ¢ d ( Qdf) sin¢g d < dg> 9 . 9
—=— — el — | singp—— ) — A\p“sin” ¢ = —p.
q Joap\"dp) g o \""0ag) Y 8

The first Sturm-Liouville problem is:

q"+pg=0, with ¢(—7m)=gq(x) and q¢'(-7)=q'(n).

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved
before. This has eigenvalue o = 0 with eigenfunction go(f) = 1 and eigenvalues i, = m? with
eigenfunctions ¢,,(0) = A, cos(mf) + By, sin(m).

By dividing by sin? ¢ with u = m?, we can write:

1d [ ,df 9 1 d (. ,dg m?
2424 = — £ b4 —
F o <” dp> A T g dg <Sm¢d¢> T

which gives the remaining two Sturm-Liouville problems.

d d

d d 2
diqb (sin<bdng> + (VSin¢— S?;d))g:O.

and




First we solve the SL Problem in ¢ by letting x = cos ¢ (with 0 < ¢ < w or —1 < & < 1). From
the chain rule we have:

dﬁ dg dr
do  dxdp

1n(;$;l—g = —/1 —xQd—g.
x

dx

It follows that the SL Problem in ¢ is transformed to an ODE in x by

—sm¢ d <s1nq§ (_Sin¢jj>>> + sin ¢ (1/— qu) g=20
sin

or Legendre’s equation:
(o), DR D
da do 1—2)97%

which has the BCs ¢g(1) and g(—1) are bounded. This has eigenvalues v, = n(n + 1), giving
the general solution:

g(x) = el P () + Q' (),

which are associated Legendre functions. Only the polynomial PJ*(x) is bounded at = = +1,
which gives the eigenfunctions:

gmn(x) = P (2) or Gmn (@) = PI**(cos ¢), m=0,1,2,... and n >m.

The orthogonality condition for these associated Legendre polynomials is:

/7r Py (cos ¢) Py (cos ¢) sin p dg = 0, n % p.
0

The radial SL-problem (p) has v = n(n + 1), so we have:

- - — — h > .
<}7 > + ()\/) n(n + )) [ = (), wit n m

This is again a form of Bessel’s equation producing spherical Bessel functions. The only bounded
solution at p =0 is:
Fo)=p 0,00 (ﬁp) :

If the k' zero of the n +  spherical Bessel function is denoted z, (so J,, 41 (2nx) = 0), then
2

the eigenvalues and eigenfunctions are:

Ank = (%)2 and Juk(p) = p_l/QJnJr% (\/m,o) , n>m and k=12, ..

The orthogonality condition for these spherical Bessel functions is:

/oaJ”+%< ”J”> (F@pd/}—o j# k.



The Superposition principle gives:

w(p,0,6,8) = D" Aonp 20,1 (VAwkp) PL(cos 6) cos (ev/ At ) +
k=1 n=0

Z Z Z (Agmn cos(mB) + By, sin(m@)) p_l/QJn+% ( /\nkp> X
k=1m=1n=m
P (cos ¢) cos < cV A t)

The initial position is given by u(p, 8, ¢,0) = F(p, ¢) cos 30, so our orthogonality conditions can
be readily applied to show that

Bipn =0 forall k,m,n, and Agmn =0 for all k,m # 3,n.

We have

F(p,¢) = iiAkSPI/J (Fﬂ) (cos¢),

k=1n=3

where

Jo ST F(p.9) 1 (VAakp) Pi(cos ¢) sin ¢ p*2de dp
I (P3(cos ¢)) sin g deb [ p ( (Fp))

Thus, the solution satisfies:

u(p,0,p,t) ZZAkg P —1/2 It (\/7[)) cos(30)P, cos¢) cos (c Ank )

k=1n=3

Ak3n =

7.10.2.c. (15 pts) Solve % = kV?2u inside sphere of radius a, so

Ou_ (10 (p00y 10 0y 1o
ot \p2op 8;) p2sin ¢ 0¢ qb p2 p2sin? ¢ 002 )
The BCis u(a, 8, ¢,t) = 0 with IC u(p, 8, ¢,0) = (p, 6) cos 6. The implicit BCs are |u(0, 6, ¢, t)| <

Oo7u<p7 ﬂ-a(bat)_u(va?(bv )7 89(p7 7r7¢7 )_a@(p?ﬂﬂ¢7t)7’u(p79707t)’<oo7and‘u(p7077r7t)‘<
00.

This analysis parallels the previous problem. We apply separation of variables by letting
u(p,0,,t) = h(t)f(p)q(0)g(¢). Initially, we have:

hl 2
VA9 _ o i kai=o.

kh — fgq

For A > 0, the solution of the t-equation is:



The spatial variables give:

gq d [ odf fqo d (. dg fg d%q
L (P2 = Yy I Y Nfgg=0
p2 dp (P dp + p2 Sln(f)d(ﬁ Sln(bd(f) + ,02 Sin2¢d02 + fgq 9

so we multiply by p?sin? ¢ and divide by fgq. The result satisfies:

q” sin? ¢ d ( Qdf) sin¢g d < dg> 9 . 9
—=— — el — | singp——= ) — A\p“sin” ¢ = —p.
q Joap\"dp) " g o \""0ag) T 8

The first Sturm-Liouville problem is:

q"+pg=0, with g(—m)=gq(r) and ¢'(-7m)=q'(m).

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved
before. This has eigenvalue o = 0 with eigenfunction ¢o(6) = 1 and eigenvalues i, = m? with
eigenfunctions ¢, (0) = Ay, cos(mb) + By, sin(m#).

By dividing by sin? ¢ with p = m?, we can write:

1d [ ,df 9 1 d (. ,dg m?
24 (2% A= — = (sinod=2 —
Fdp <p dp> AT T singdo <““¢d¢> Tane

which gives the remaining two Sturm-Liouville problems.

d d

d d 2
£ () (o) =0

First we solve the SL Problem in ¢ by letting x = cos ¢ (with 0 < ¢ < w or —1 < & < 1). From
the chain rule we have:

and

dg dgdx . . dg dg
27— 2 — _\/1—= 27'
Qo dwdp . SPg, T VITEL

It follows that the SL Problem in ¢ is transformed to an ODE in z by

2
—singf)% (sind) <—sin¢ji>> +sin ¢ <I/— s1:)112¢> g=>0

or Legendre’s equation:
d o, dg m?
~ (1= -J o =0
dz <( $)d¢>+<y 1—m2>g ’

which has the BCs ¢g(1) and g(—1) are bounded. This has eigenvalues v, = n(n + 1), giving
the general solution:
g9(x) = er By () + c2Qp' (),

which are associated Legendre functions. Only the polynomial PJ*(x) is bounded at = = +1,
which gives the eigenfunctions:

gmn(x) = P () or gmn (@) = P*(cos ¢), m=0,1,2,... and n>m.



The orthogonality condition for these associated Legendre polynomials is:

/7r Py (cos ¢) Py (cos ¢) sin p dg = 0, n # p.
0

The radial SL-problem (p) has v = n(n + 1), so we have:

— —_— = > .

This is again a form of Bessel’s equation producing spherical Bessel functions. The only bounded

solution at p =0 is:
fo)=p""20, 0 (ﬁp) :

If the j'" zero of the n + § spherical Bessel function is denoted zy; (so Jpy1 (2n5) = 0), then
2
the eigenvalues and eigenfunctions are:

2
Anj = (%) and Ini(p) = p_l/QJnJr% ( /\njp> , n>m and j=12,..

The orthogonality condition for these spherical Bessel functions is:

/oaj’”%( Mip) iy (VAnip) pdp =0, i}

The Superposition principle gives:

060) = 33 5, () Plcs e 4
j—ln*O

55> (Ao cos(md) + By sinmt)) o2,y (/Ao

j=1m=1n=m

P™(cos ¢p)e FAnit,

The initial position is given by u(p, 0, ¢,0) = F(p, ¢) cos 6, so our orthogonality conditions can
be readily applied to show that

Bjpn =0 forall j,m,n, and Ajmn =0 forall jym#1,n.

We have o =
¢) = Z Z Ajlnpil/z‘]nJr% ( >‘an> P, (cos ¢),

j=1n=1

where

Jo I F(p,0) T 1 (\/Anjp) Pr(cos ¢) sin g p**do dp

Jo (Pl(cos ¢)) s1n¢>dq§f0 ( %(\/E,O)) 0 .

Ajin =



Thus, the solution satisfies:

w(p,0,6,8) = S Ajinp™ 2,1 (VAwgp) cos(8) P (cos p)e .

7.10.8 (10 pts) The ODE related to Bessel’s equation is:

d? d
de—xJ; + (1l —2a— 2bw)£ + (a® — p* + (2a — 1)bz + (d* + b%)2?) f = 0. (1)

When f(z) = :c“emep(dx), we want to find parameters a, b, d, and p, so Z,(x) solves Bessel’s
equation:
?Zy," + 12, + (2> — p*)Z, = 0.

With this form of f(z), we have:
fllx) = az® e’ Z,(dx) + 2%’ Z,(dx) + 2% dZ," (dx)
= gl ((a + bx) Zy(dx) + dzZ, ' (dx)) ,
and
f"(x) = ala—1)2" 2" Z,(dz) + 2abz* e Z,(dx) + b*2"e*"dZ,(dx)
+2adx® e 7,/ (dx) 4 2bdxe" Z,' (dx) + d*x"e" Z," (dx)
= 272" ((a(a — 1) + 2abx + b*2?) Z,(dx)+
2d(az + ba?)Z,'(dz) + d*2*Z," (dz)) .

These are substituted into Eq. giving:
b ((a(a — 1) + 2abz + v22?) Z,(dx) + 2d(az + bx?)Z, (dx) + d*2*Z, "(dx))
(1 —2a — 2bx)x%™ ((a + bx)Zy(dz) + dzZ,'(dz))
(a* = p* + (2a — Db + (d* + b*)2?) %" Z,(dx) = 0,
which after cancellation is equivalent to
d?x*Z," (dx) + dxZ,' (dz) + (d*x* — p*)Z,(dx) = 0.
For y = dx, this has the solution Z,(y) to Bessel’s equation.
The radial SL-problem for the spherical problem has the form:
22 f" 4 2zf' + Az —n(n+1)) f=0.

For Eq. to have the same form as the spherical ODE, we need 1 — 2a — 2bx = 2, s0 b =0
and a = —% from the coefficient of f’. From the coefficient of f with a and b above, we need

@ =Xord=vVXand} —p? = —n(n+1) orp? =n*+n+i=(m+5) orp=n+i It
follows that
—1/2 0Oz —1/2
flz) =271 Jn_%(\am):x /Jn_%(ﬁx),

which matches the solution for the spherical Bessel function.



7.10.9.a (10 pts) Consider Laplace’s equation inside a sphere VZu = 0 of radius a, so

10 (a0, 10 (o 1
P2 0p 8,0 p2sin ¢ 0¢ qb p2 02sin? ¢ 002
The BC’s are u(a, 6, ¢,t) = (qb) cos(40) with implicit BCs |u(0, 0, ¢,t)| < oo, u(p, —m, ¢, t) =
u(p,m, ¢, t), g—”g(p, -7, P, t) = 86 o (p,m, 0, t), lu(p,0,0,t)| < oo, and |u(p, 0, 7,t)| < oco.

This analysis parallels the first two problems. We apply separation of variables by letting
u(p,0,¢) = f(p)a(0)g(¢). We have:

99 d ( 2df fa_d (4 .99 f9  d*q _
p2dp <p dp +p2sin¢d¢ S1n¢d¢ +pQSin2¢d92_O’

so we multiply by p?sin? ¢ and divide by fgq. The result satisfies:

(]”__sin2¢d<2df> sing d ( ¢dg) B
e f w\"dp) g 4o )~ "

The first Sturm-Liouville problem is:

q"+pg=0, with q(—m)=gq(r) and ¢'(-7m)=q'(m).

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved
before. This has eigenvalue o = 0 with eigenfunction qo(f) = 1 and eigenvalues i, = m? with
eigenfunctions ¢, (0) = A, cos(mb) + By, sin(m#).

By dividing by sin? ¢ with g = m?, we can write:

1d< df> 1 d(,(bdg) m?
fdp dp gsin¢d¢ do smz(z)_y’

which gives the remaining two ODEs.

d ( odf B
@<P@>‘”—°

CZ;s <s1nqﬁd¢> (Vsm¢— T;>9=0-

First we solve the SL Problem in ¢ by letting x = cos¢ (with 0 < ¢ < w or —1 < 2 < 1). From
the chain rule we have:

and

dg _dgdz _ sind)ﬁz—\/l—aﬂd—g.

dp drdd dx dx
It follows that the SL Problem in ¢ is transformed to an ODE in z by

—Sin(b% <sinq§ (—sm¢d¢>> +sin¢ (1/— sizl;(b) g=20

or Legendre’s equation:
d dg m?
—((1=HXZ - -
dz <( x)d¢>+<” 1—932)9 0




which has the BCs ¢(1) and g(—1) are bounded. This has eigenvalues v, = n(n + 1), giving
the general solution:

9(x) = a1l P (z) + c2Qy' (),
which are associated Legendre functions. Only the polynomial P/*(x) is bounded at = = £1,
which gives the eigenfunctions:

gmn(z) = P () or Gmn(®) = P'(cos ¢), m=0,1,2,... and n>m.

The orthogonality condition for these associated Legendre polynomials is:

/7r Py (cos ¢) Py (cos ¢) sin p dg = 0, n # p.
0

The radial problem (p) has v = n(n + 1), so we have:

d d
P <p2d‘2> —n(n+1)f=0, with n=1,2,..

This is a Cauchy-Euler equation, so try a solution of the form f(p) = p". It follows that:

-1

prr(r = 1)p 2+ 2prp "t —n(n+1)p" =0,

which gives the auxiliary equation 72 + 7 —n(n +1) = 0, so r = n or —(n + 1). Thus, the

solution is:
f(p) = c1p™ + cop™ ",

The bounded BC implies co = 0, so f,(p) = p™.

The Superposition principle gives:

[e.e] o0
u(p,0,¢) = Z Agnp" P2 (cos ¢) + Z Z mn €08(mB) + By, sin(m#)) p" P (cos ¢).
n=1

m=1n=m
The nonhomogeneous BC gives:

oo o0

u(a,d,¢9) = ZAOna"PO cos ¢) + Z Z mn €08(mB) + By, sin(mb)) a” P (cos ¢)

m=1n=m

= F(qﬁ) cos(46).

Orthogonality gives By, = 0 for all m and n and A,,,, = 0 for m # 4. It follows that:

o

F(¢) =) Asna™Py(cos ¢).

n=4
The Fourier coefficients are:
Jo F(¢) Py (cos ¢) sin ¢ dep
"fo P;Ll cOS gb)) smqbqu

A4n

Thus, the solution satisfies:

u(p, 0, ¢) = p" cos(40) Z Ay P(cos ¢).

n=4



