7.10.1.e. (15 pts) Solve $\frac{d^{2} u}{d t^{2}}=c^{2} \nabla^{2} u$ inside sphere of radius a, so

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial u}{\partial \phi}\right)+\frac{1}{\rho^{2} \sin ^{2} \phi} \frac{\partial^{2} u}{\partial \theta^{2}}\right) .
$$

The BC is $u(a, \theta, \phi, t)=0$ with ICs $u(\rho, \theta, \phi, 0)=F(\rho, \phi) \cos (3 \theta)$ and $\frac{\partial u}{\partial t}(\rho, \theta, \phi, 0)=0$. The implicit BCs are $|u(0, \theta, \phi, t)|<\infty, u(\rho,-\pi, \phi, t)=u(\rho, \pi, \phi, t), \frac{\partial u}{\partial \theta}(\rho,-\pi, \phi, t)=\frac{\partial u}{\partial \theta}(\rho, \pi, \phi, t)$, $|u(\rho, \theta, 0, t)|<\infty$, and $|u(\rho, \theta, \pi, t)|<\infty$.

We apply separation of variables by letting $u(\rho, \theta, \phi, t)=h(t) f(\rho) q(\theta) g(\phi)$. Initially, we have:

$$
\frac{h^{\prime \prime}}{c^{2} h}=\frac{\nabla^{2}(f g q)}{f g q}=-\lambda, \quad \text { so } \quad h^{\prime \prime}+c^{2} \lambda h=0
$$

For $\lambda>0$, the solution of the t-equation is:

$$
h(t)=A \cos (c \sqrt{\lambda} t)+B \sin (c \sqrt{\lambda} t) .
$$

Since the initial velocity is zero, $\frac{d h}{d t}(0)=0$, which implies $B=0$, so $h(t)=A \cos (c \sqrt{\lambda} t)$.
The spatial variables give:

$$
\frac{g q}{\rho^{2}} \frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)+\frac{f q}{\rho^{2} \sin \phi} \frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)+\frac{f g}{\rho^{2} \sin ^{2} \phi} \frac{d^{2} q}{d \theta^{2}}+\lambda f g q=0,
$$

so we multiply by $\rho^{2} \sin ^{2} \phi$ and divide by $f g q$. The result satisfies:

$$
\frac{q^{\prime \prime}}{q}=-\frac{\sin ^{2} \phi}{f} \frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)-\frac{\sin \phi}{g} \frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)-\lambda \rho^{2} \sin ^{2} \phi=-\mu .
$$

The first Sturm-Liouville problem is:

$$
q^{\prime \prime}+\mu q=0, \quad \text { with } \quad q(-\pi)=q(\pi) \quad \text { and } \quad q^{\prime}(-\pi)=q^{\prime}(\pi) .
$$

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved before. This has eigenvalue $\mu_{0}=0$ with eigenfunction $q_{0}(\theta)=1$ and eigenvalues $\mu_{m}=m^{2}$ with eigenfunctions $q_{m}(\theta)=A_{m} \cos (m \theta)+B_{m} \sin (m \theta)$.

By dividing by $\sin ^{2} \phi$ with $\mu=m^{2}$, we can write:

$$
\frac{1}{f} \frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)+\rho^{2} \lambda=-\frac{1}{g \sin \phi} \frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)+\frac{m^{2}}{\sin ^{2} \phi}=\nu
$$

which gives the remaining two Sturm-Liouville problems.

$$
\frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)+\left(\lambda \rho^{2}-\nu\right) f=0
$$

and

$$
\frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)+\left(\nu \sin \phi-\frac{m^{2}}{\sin \phi}\right) g=0 .
$$

First we solve the SL Problem in ϕ by letting $x=\cos \phi$ (with $0<\phi<\pi$ or $-1<x<1$). From the chain rule we have:

$$
\frac{d g}{d \phi}=\frac{d g}{d x} \frac{d x}{d \phi}=-\sin \phi \frac{d g}{d x}=-\sqrt{1-x^{2}} \frac{d g}{d x} .
$$

It follows that the SL Problem in ϕ is transformed to an ODE in x by

$$
-\sin \phi \frac{d}{d x}\left(\sin \phi\left(-\sin \phi \frac{d g}{d \phi}\right)\right)+\sin \phi\left(\nu-\frac{m^{2}}{\sin ^{2} \phi}\right) g=0
$$

or Legendre's equation:

$$
\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d g}{d \phi}\right)+\left(\nu-\frac{m^{2}}{1-x^{2}}\right) g=0
$$

which has the BCs $g(1)$ and $g(-1)$ are bounded. This has eigenvalues $\nu_{n}=n(n+1)$, giving the general solution:

$$
g(x)=c_{1} P_{n}^{m}(x)+c_{2} Q_{n}^{m}(x)
$$

which are associated Legendre functions. Only the polynomial $P_{n}^{m}(x)$ is bounded at $x= \pm 1$, which gives the eigenfunctions:

$$
g_{m n}(x)=P_{n}^{m}(x) \quad \text { or } \quad g_{m n}(\phi)=P_{n}^{m}(\cos \phi), \quad m=0,1,2, \ldots \quad \text { and } \quad n \geq m
$$

The orthogonality condition for these associated Legendre polynomials is:

$$
\int_{0}^{\pi} P_{n}^{m}(\cos \phi) P_{p}^{m}(\cos \phi) \sin \phi d \phi=0, \quad n \neq p
$$

The radial SL-problem (ρ) has $\nu=n(n+1)$, so we have:

$$
\frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)+\left(\lambda \rho^{2}-n(n+1)\right) f=0, \quad \text { with } \quad n \geq m
$$

This is again a form of Bessel's equation producing spherical Bessel functions. The only bounded solution at $\rho=0$ is:

$$
f(\rho)=\rho^{-1 / 2} J_{n+\frac{1}{2}}(\sqrt{\lambda} \rho) .
$$

If the $k^{\text {th }}$ zero of the $n+\frac{1}{2}$ spherical Bessel function is denoted $z_{n k}$ (so $J_{n+\frac{1}{2}}\left(z_{n k}\right)=0$), then the eigenvalues and eigenfunctions are:

$$
\lambda_{n k}=\left(\frac{z_{n k}}{a}\right)^{2} \quad \text { and } \quad f_{n k}(\rho)=\rho^{-1 / 2} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n k}} \rho\right), \quad n \geq m \quad \text { and } \quad k=1,2, \ldots
$$

The orthogonality condition for these spherical Bessel functions is:

$$
\int_{0}^{a} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n j}} \rho\right) J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n k}} \rho\right) \rho d \rho=0, \quad j \neq k .
$$

The Superposition principle gives:

$$
\begin{gathered}
u(\rho, \theta, \phi, t)=\sum_{k=1}^{\infty} \sum_{n=0}^{\infty} A_{k 0 n} \rho^{-1 / 2} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n k}} \rho\right) P_{n}^{0}(\cos \phi) \cos \left(c \sqrt{\lambda_{n k}} t\right)+ \\
\sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \sum_{n=m}^{\infty}\left(A_{k m n} \cos (m \theta)+B_{k m n} \sin (m \theta)\right) \rho^{-1 / 2} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n k}} \rho\right) \times \\
P_{n}^{m}(\cos \phi) \cos \left(c \sqrt{\lambda_{n k}} t\right) .
\end{gathered}
$$

The initial position is given by $u(\rho, \theta, \phi, 0)=F(\rho, \phi) \cos 3 \theta$, so our orthogonality conditions can be readily applied to show that

$$
B_{k m n}=0 \quad \text { for all } \quad k, m, n, \quad \text { and } \quad A_{k m n}=0 \quad \text { for all } k, m \neq 3, n .
$$

We have

$$
F(\rho, \phi)=\sum_{k=1}^{\infty} \sum_{n=3}^{\infty} A_{k 3 n} \rho^{-1 / 2} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n k}} \rho\right) P_{n}^{3}(\cos \phi),
$$

where

$$
A_{k 3 n}=\frac{\int_{0}^{a} \int_{0}^{\pi} F(\rho, \phi) J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n k}} \rho\right) P_{n}^{3}(\cos \phi) \sin \phi \rho^{3 / 2} d \phi d \rho}{\int_{0}^{\pi}\left(P_{n}^{3}(\cos \phi)\right)^{2} \sin \phi d \phi \int_{0}^{a} \rho\left(J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n k}} \rho\right)\right)^{2} d \rho} .
$$

Thus, the solution satisfies:

$$
u(\rho, \theta, \phi, t)=\sum_{k=1}^{\infty} \sum_{n=3}^{\infty} A_{k 3 n} \rho^{-1 / 2} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n k}} \rho\right) \cos (3 \theta) P_{n}^{3}(\cos \phi) \cos \left(c \sqrt{\lambda_{n k}} t\right)
$$

7.10.2.c. (15 pts) Solve $\frac{d u}{d t}=k \nabla^{2} u$ inside sphere of radius a, so

$$
\frac{\partial u}{\partial t}=k\left(\frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial u}{\partial \phi}\right)+\frac{1}{\rho^{2} \sin ^{2} \phi} \frac{\partial^{2} u}{\partial \theta^{2}}\right) .
$$

The BC is $u(a, \theta, \phi, t)=0$ with IC $u(\rho, \theta, \phi, 0)=F(\rho, \theta) \cos \theta$. The implicit BCs are $|u(0, \theta, \phi, t)|<$ $\infty, u(\rho,-\pi, \phi, t)=u(\rho, \pi, \phi, t), \frac{\partial u}{\partial \theta}(\rho,-\pi, \phi, t)=\frac{\partial u}{\partial \theta}(\rho, \pi, \phi, t),|u(\rho, \theta, 0, t)|<\infty$, and $|u(\rho, \theta, \pi, t)|<$ ∞.

This analysis parallels the previous problem. We apply separation of variables by letting $u(\rho, \theta, \phi, t)=h(t) f(\rho) q(\theta) g(\phi)$. Initially, we have:

$$
\frac{h^{\prime}}{k h}=\frac{\nabla^{2}(f g q)}{f g q}=-\lambda, \quad \text { so } \quad h^{\prime}+k \lambda h=0 .
$$

For $\lambda>0$, the solution of the t-equation is:

$$
h(t)=A e^{-k \lambda t} .
$$

The spatial variables give:

$$
\frac{g q}{\rho^{2}} \frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)+\frac{f q}{\rho^{2} \sin \phi} \frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)+\frac{f g}{\rho^{2} \sin ^{2} \phi} \frac{d^{2} q}{d \theta^{2}}+\lambda f g q=0,
$$

so we multiply by $\rho^{2} \sin ^{2} \phi$ and divide by $f g q$. The result satisfies:

$$
\frac{q^{\prime \prime}}{q}=-\frac{\sin ^{2} \phi}{f} \frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)-\frac{\sin \phi}{g} \frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)-\lambda \rho^{2} \sin ^{2} \phi=-\mu .
$$

The first Sturm-Liouville problem is:

$$
q^{\prime \prime}+\mu q=0, \quad \text { with } \quad q(-\pi)=q(\pi) \quad \text { and } \quad q^{\prime}(-\pi)=q^{\prime}(\pi) .
$$

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved before. This has eigenvalue $\mu_{0}=0$ with eigenfunction $q_{0}(\theta)=1$ and eigenvalues $\mu_{m}=m^{2}$ with eigenfunctions $q_{m}(\theta)=A_{m} \cos (m \theta)+B_{m} \sin (m \theta)$.
By dividing by $\sin ^{2} \phi$ with $\mu=m^{2}$, we can write:

$$
\frac{1}{f} \frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)+\rho^{2} \lambda=-\frac{1}{g \sin \phi} \frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)+\frac{m^{2}}{\sin ^{2} \phi}=\nu
$$

which gives the remaining two Sturm-Liouville problems.

$$
\frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)+\left(\lambda \rho^{2}-\nu\right) f=0
$$

and

$$
\frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)+\left(\nu \sin \phi-\frac{m^{2}}{\sin \phi}\right) g=0 .
$$

First we solve the SL Problem in ϕ by letting $x=\cos \phi$ (with $0<\phi<\pi$ or $-1<x<1$). From the chain rule we have:

$$
\frac{d g}{d \phi}=\frac{d g}{d x} \frac{d x}{d \phi}=-\sin \phi \frac{d g}{d x}=-\sqrt{1-x^{2}} \frac{d g}{d x} .
$$

It follows that the SL Problem in ϕ is transformed to an ODE in x by

$$
-\sin \phi \frac{d}{d x}\left(\sin \phi\left(-\sin \phi \frac{d g}{d \phi}\right)\right)+\sin \phi\left(\nu-\frac{m^{2}}{\sin ^{2} \phi}\right) g=0
$$

or Legendre's equation:

$$
\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d g}{d \phi}\right)+\left(\nu-\frac{m^{2}}{1-x^{2}}\right) g=0
$$

which has the BCs $g(1)$ and $g(-1)$ are bounded. This has eigenvalues $\nu_{n}=n(n+1)$, giving the general solution:

$$
g(x)=c_{1} P_{n}^{m}(x)+c_{2} Q_{n}^{m}(x),
$$

which are associated Legendre functions. Only the polynomial $P_{n}^{m}(x)$ is bounded at $x= \pm 1$, which gives the eigenfunctions:

$$
g_{m n}(x)=P_{n}^{m}(x) \quad \text { or } \quad g_{m n}(\phi)=P_{n}^{m}(\cos \phi), \quad m=0,1,2, \ldots \quad \text { and } \quad n \geq m .
$$

The orthogonality condition for these associated Legendre polynomials is:

$$
\int_{0}^{\pi} P_{n}^{m}(\cos \phi) P_{p}^{m}(\cos \phi) \sin \phi d \phi=0, \quad n \neq p
$$

The radial SL-problem (ρ) has $\nu=n(n+1)$, so we have:

$$
\frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)+\left(\lambda \rho^{2}-n(n+1)\right) f=0, \quad \text { with } \quad n \geq m
$$

This is again a form of Bessel's equation producing spherical Bessel functions. The only bounded solution at $\rho=0$ is:

$$
f(\rho)=\rho^{-1 / 2} J_{n+\frac{1}{2}}(\sqrt{\lambda} \rho) .
$$

If the $j^{\text {th }}$ zero of the $n+\frac{1}{2}$ spherical Bessel function is denoted $z_{n j}$ (so $J_{n+\frac{1}{2}}\left(z_{n j}\right)=0$), then the eigenvalues and eigenfunctions are:

$$
\lambda_{n j}=\left(\frac{z_{n j}}{a}\right)^{2} \quad \text { and } \quad f_{n j}(\rho)=\rho^{-1 / 2} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n j}} \rho\right), \quad n \geq m \quad \text { and } \quad j=1,2, \ldots
$$

The orthogonality condition for these spherical Bessel functions is:

$$
\int_{0}^{a} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n i}} \rho\right) J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n j}} \rho\right) \rho d \rho=0, \quad i \neq j
$$

The Superposition principle gives:

$$
\begin{aligned}
& u(\rho, \theta, \phi, t)= \sum_{j=1}^{\infty} \sum_{n=0}^{\infty} A_{j 0 n} \rho^{-1 / 2} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n j}} \rho\right) P_{n}^{0}(\cos \phi) e^{-k \lambda_{n j} t}+ \\
& \sum_{j=1}^{\infty} \sum_{m=1}^{\infty} \sum_{n=m}^{\infty}\left(A_{j m n} \cos (m \theta)+B_{j m n} \sin (m \theta)\right) \rho^{-1 / 2} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n j}} \rho\right) \times \\
& P_{n}^{m}(\cos \phi) e^{-k \lambda_{n j} t} .
\end{aligned}
$$

The initial position is given by $u(\rho, \theta, \phi, 0)=F(\rho, \phi) \cos \theta$, so our orthogonality conditions can be readily applied to show that

$$
B_{j m n}=0 \quad \text { for all } j, m, n, \quad \text { and } \quad A_{j m n}=0 \quad \text { for all } j, m \neq 1, n .
$$

We have

$$
F(\rho, \phi)=\sum_{j=1}^{\infty} \sum_{n=1}^{\infty} A_{j 1 n} \rho^{-1 / 2} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n j}} \rho\right) P_{n}^{1}(\cos \phi),
$$

where

$$
A_{j 1 n}=\frac{\int_{0}^{a} \int_{0}^{\pi} F(\rho, \phi) J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n j}} \rho\right) P_{n}^{1}(\cos \phi) \sin \phi \rho^{3 / 2} d \phi d \rho}{\int_{0}^{\pi}\left(P_{n}^{1}(\cos \phi)\right)^{2} \sin \phi d \phi \int_{0}^{a} \rho\left(J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n j}} \rho\right)\right)^{2} d \rho}
$$

Thus, the solution satisfies:

$$
u(\rho, \theta, \phi, t)=\sum_{j=1}^{\infty} \sum_{n=1}^{\infty} A_{j 1 n} \rho^{-1 / 2} J_{n+\frac{1}{2}}\left(\sqrt{\lambda_{n j}} \rho\right) \cos (\theta) P_{n}^{1}(\cos \phi) e^{-k \lambda_{n j} t} .
$$

7.10.8 (10 pts) The ODE related to Bessel's equation is:

$$
\begin{equation*}
x^{2} \frac{d^{2} f}{d x^{2}}+x(1-2 a-2 b x) \frac{d f}{d x}+\left(a^{2}-p^{2}+(2 a-1) b x+\left(d^{2}+b^{2}\right) x^{2}\right) f=0 . \tag{1}
\end{equation*}
$$

When $f(x)=x^{a} e^{b x} Z_{p}(d x)$, we want to find parameters a, b, d, and p, so $Z_{p}(x)$ solves Bessel's equation:

$$
x^{2} Z_{p}{ }^{\prime \prime}+x Z_{p}{ }^{\prime}+\left(x^{2}-p^{2}\right) Z_{p}=0 .
$$

With this form of $f(x)$, we have:

$$
\begin{aligned}
f^{\prime}(x) & =a x^{a-1} e^{b x} Z_{p}(d x)+x^{a} b e^{b x} Z_{p}(d x)+x^{a} e^{b x} d Z_{p}{ }^{\prime}(d x) \\
& =x^{a-1} e^{b x}\left((a+b x) Z_{p}(d x)+d x Z_{p}^{\prime}(d x)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
f^{\prime \prime}(x)= & a(a-1) x^{a-2} e^{b x} Z_{p}(d x)+2 a b x^{a-1} e^{b x} Z_{p}(d x)+b^{2} x^{a} e^{b x} d Z_{p}(d x) \\
& +2 a d x^{a-1} e^{b x} Z_{p}{ }^{\prime}(d x)+2 b d x^{a} e^{b x} Z_{p}^{\prime}(d x)+d^{2} x^{a} e^{b x} Z_{p}{ }^{\prime \prime}(d x) \\
= & x^{a-2} e^{b x}\left(\left(a(a-1)+2 a b x+b^{2} x^{2}\right) Z_{p}(d x)+\right. \\
& \left.2 d\left(a x+b x^{2}\right) Z_{p}{ }^{\prime}(d x)+d^{2} x^{2} Z_{p}^{\prime \prime}(d x)\right) .
\end{aligned}
$$

These are substituted into Eq. (1) giving:

$$
\begin{aligned}
x^{a} e^{b x}\left(\left(a(a-1)+2 a b x+b^{2} x^{2}\right) Z_{p}(d x)+2 d\left(a x+b x^{2}\right) Z_{p}{ }^{\prime}(d x)+d^{2} x^{2} Z_{p}{ }^{\prime \prime}(d x)\right) \\
(1-2 a-2 b x) x^{a} e^{b x}\left((a+b x) Z_{p}(d x)+d x Z_{p}{ }^{\prime}(d x)\right) \\
\left(a^{2}-p^{2}+(2 a-1) b x+\left(d^{2}+b^{2}\right) x^{2}\right) x^{a} e^{b x} Z_{p}(d x)=0,
\end{aligned}
$$

which after cancellation is equivalent to

$$
d^{2} x^{2} Z_{p}^{\prime \prime}(d x)+d x Z_{p}^{\prime}(d x)+\left(d^{2} x^{2}-p^{2}\right) Z_{p}(d x)=0
$$

For $y=d x$, this has the solution $Z_{p}(y)$ to Bessel's equation.
The radial SL-problem for the spherical problem has the form:

$$
x^{2} f^{\prime \prime}+2 x f^{\prime}+(\lambda x-n(n+1)) f=0 .
$$

For Eq. (1) to have the same form as the spherical ODE, we need $1-2 a-2 b x=2$, so $b=0$ and $a=-\frac{1}{2}$ from the coefficient of f^{\prime}. From the coefficient of f with a and b above, we need $d^{2}=\lambda$ or $d=\sqrt{\lambda}$ and $\frac{1}{4}-p^{2}=-n(n+1)$ or $p^{2}=n^{2}+n+\frac{1}{4}=\left(n+\frac{1}{2}\right)^{2}$ or $p=n+\frac{1}{2}$. It follows that

$$
f(x)=x^{-1 / 2} e^{0 x} J_{n+\frac{1}{2}}(\sqrt{\lambda} x)=x^{-1 / 2} J_{n+\frac{1}{2}}(\sqrt{\lambda} x),
$$

which matches the solution for the spherical Bessel function.
7.10.9.a (10 pts) Consider Laplace's equation inside a sphere $\nabla^{2} u=0$ of radius a, so

$$
\frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial u}{\partial \phi}\right)+\frac{1}{\rho^{2} \sin ^{2} \phi} \frac{\partial^{2} u}{\partial \theta^{2}}=0 .
$$

The BC's are $u(a, \theta, \phi, t)=F(\phi) \cos (4 \theta)$ with implicit BCs $|u(0, \theta, \phi, t)|<\infty, u(\rho,-\pi, \phi, t)=$ $u(\rho, \pi, \phi, t), \frac{\partial u}{\partial \theta}(\rho,-\pi, \phi, t)=\frac{\partial u}{\partial \theta}(\rho, \pi, \phi, t),|u(\rho, \theta, 0, t)|<\infty$, and $|u(\rho, \theta, \pi, t)|<\infty$.
This analysis parallels the first two problems. We apply separation of variables by letting $u(\rho, \theta, \phi)=f(\rho) q(\theta) g(\phi)$. We have:

$$
\frac{g q}{\rho^{2}} \frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)+\frac{f q}{\rho^{2} \sin \phi} \frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)+\frac{f g}{\rho^{2} \sin ^{2} \phi} \frac{d^{2} q}{d \theta^{2}}=0
$$

so we multiply by $\rho^{2} \sin ^{2} \phi$ and divide by $f g q$. The result satisfies:

$$
\frac{q^{\prime \prime}}{q}=-\frac{\sin ^{2} \phi}{f} \frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)-\frac{\sin \phi}{g} \frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)=-\mu .
$$

The first Sturm-Liouville problem is:

$$
q^{\prime \prime}+\mu q=0, \quad \text { with } \quad q(-\pi)=q(\pi) \quad \text { and } \quad q^{\prime}(-\pi)=q^{\prime}(\pi) .
$$

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved before. This has eigenvalue $\mu_{0}=0$ with eigenfunction $q_{0}(\theta)=1$ and eigenvalues $\mu_{m}=m^{2}$ with eigenfunctions $q_{m}(\theta)=A_{m} \cos (m \theta)+B_{m} \sin (m \theta)$.
By dividing by $\sin ^{2} \phi$ with $\mu=m^{2}$, we can write:

$$
\frac{1}{f} \frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)=-\frac{1}{g \sin \phi} \frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)+\frac{m^{2}}{\sin ^{2} \phi}=\nu
$$

which gives the remaining two ODEs.

$$
\frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)-\nu f=0
$$

and

$$
\frac{d}{d \phi}\left(\sin \phi \frac{d g}{d \phi}\right)+\left(\nu \sin \phi-\frac{m^{2}}{\sin \phi}\right) g=0 .
$$

First we solve the SL Problem in ϕ by letting $x=\cos \phi$ (with $0<\phi<\pi$ or $-1<x<1$). From the chain rule we have:

$$
\frac{d g}{d \phi}=\frac{d g}{d x} \frac{d x}{d \phi}=-\sin \phi \frac{d g}{d x}=-\sqrt{1-x^{2}} \frac{d g}{d x} .
$$

It follows that the SL Problem in ϕ is transformed to an ODE in x by

$$
-\sin \phi \frac{d}{d x}\left(\sin \phi\left(-\sin \phi \frac{d g}{d \phi}\right)\right)+\sin \phi\left(\nu-\frac{m^{2}}{\sin ^{2} \phi}\right) g=0
$$

or Legendre's equation:

$$
\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d g}{d \phi}\right)+\left(\nu-\frac{m^{2}}{1-x^{2}}\right) g=0
$$

which has the BCs $g(1)$ and $g(-1)$ are bounded. This has eigenvalues $\nu_{n}=n(n+1)$, giving the general solution:

$$
g(x)=c_{1} P_{n}^{m}(x)+c_{2} Q_{n}^{m}(x),
$$

which are associated Legendre functions. Only the polynomial $P_{n}^{m}(x)$ is bounded at $x= \pm 1$, which gives the eigenfunctions:

$$
g_{m n}(x)=P_{n}^{m}(x) \quad \text { or } \quad g_{m n}(\phi)=P_{n}^{m}(\cos \phi), \quad m=0,1,2, \ldots \quad \text { and } \quad n \geq m .
$$

The orthogonality condition for these associated Legendre polynomials is:

$$
\int_{0}^{\pi} P_{n}^{m}(\cos \phi) P_{p}^{m}(\cos \phi) \sin \phi d \phi=0, \quad n \neq p
$$

The radial problem (ρ) has $\nu=n(n+1)$, so we have:

$$
\left.\frac{d}{d \rho}\left(\rho^{2} \frac{d f}{d \rho}\right)-n(n+1)\right) f=0, \quad \text { with } \quad n=1,2, \ldots
$$

This is a Cauchy-Euler equation, so try a solution of the form $f(\rho)=\rho^{r}$. It follows that:

$$
\rho^{2} r(r-1) \rho^{r-2}+2 \rho r \rho^{r-1}-n(n+1) \rho^{r}=0,
$$

which gives the auxiliary equation $r^{2}+r-n(n+1)=0$, so $r=n$ or $-(n+1)$. Thus, the solution is:

$$
f(\rho)=c_{1} \rho^{n}+c_{2} \rho^{-(n+1)} .
$$

The bounded BC implies $c_{2}=0$, so $f_{n}(\rho)=\rho^{n}$.
The Superposition principle gives:

$$
u(\rho, \theta, \phi)=\sum_{n=1}^{\infty} A_{0 n} \rho^{n} P_{n}^{0}(\cos \phi)+\sum_{m=1}^{\infty} \sum_{n=m}^{\infty}\left(A_{m n} \cos (m \theta)+B_{m n} \sin (m \theta)\right) \rho^{n} P_{n}^{m}(\cos \phi) .
$$

The nonhomogeneous BC gives:

$$
\begin{aligned}
u(a, \theta, \phi) & =\sum_{n=1}^{\infty} A_{0 n} a^{n} P_{n}^{0}(\cos \phi)+\sum_{m=1}^{\infty} \sum_{n=m}^{\infty}\left(A_{m n} \cos (m \theta)+B_{m n} \sin (m \theta)\right) a^{n} P_{n}^{m}(\cos \phi) \\
& =F(\phi) \cos (4 \theta) .
\end{aligned}
$$

Orthogonality gives $B_{m n}=0$ for all m and n and $A_{m n}=0$ for $m \neq 4$. It follows that:

$$
F(\phi)=\sum_{n=4}^{\infty} A_{4 n} a^{n} P_{n}^{4}(\cos \phi)
$$

The Fourier coefficients are:

$$
A_{4 n}=\frac{\int_{0}^{\pi} F(\phi) P_{n}^{4}(\cos \phi) \sin \phi d \phi}{a^{n} \int_{0}^{\pi}\left(P_{n}^{4}(\cos \phi)\right)^{2} \sin \phi d \phi}
$$

Thus, the solution satisfies:

$$
u(\rho, \theta, \phi)=\rho^{n} \cos (4 \theta) \sum_{n=4}^{\infty} A_{4 n} P_{n}^{4}(\cos \phi) .
$$

