
Spring Homework 9 Math 531

7.10.1.e. (15 pts) Solve d2u
dt2

= c2∇2u inside sphere of radius a, so

∂2u

∂t2
= c2

(
1

ρ2
∂

∂ρ

(
ρ2
∂u

∂ρ

)
+

1

ρ2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
+

1

ρ2 sin2 φ

∂2u

∂θ2

)
.

The BC is u(a, θ, φ, t) = 0 with ICs u(ρ, θ, φ, 0) = F (ρ, φ) cos(3θ) and ∂u
∂t (ρ, θ, φ, 0) = 0. The

implicit BCs are |u(0, θ, φ, t)| < ∞, u(ρ,−π, φ, t) = u(ρ, π, φ, t), ∂u
∂θ (ρ,−π, φ, t) = ∂u

∂θ (ρ, π, φ, t),
|u(ρ, θ, 0, t)| <∞, and |u(ρ, θ, π, t)| <∞.

We apply separation of variables by letting u(ρ, θ, φ, t) = h(t)f(ρ)q(θ)g(φ). Initially, we have:

h ′′

c2h
=
∇2(fgq)

fgq
= −λ, so h ′′ + c2λh = 0.

For λ > 0, the solution of the t-equation is:

h(t) = A cos
(
c
√
λt
)

+B sin
(
c
√
λt
)
.

Since the initial velocity is zero, dh
dt (0) = 0, which implies B = 0, so h(t) = A cos

(
c
√
λt
)

.

The spatial variables give:

gq

ρ2
d

dρ

(
ρ2
df

dρ

)
+

fq

ρ2 sinφ

d

dφ

(
sinφ

dg

dφ

)
+

fg

ρ2 sin2 φ

d2q

dθ2
+ λfgq = 0,

so we multiply by ρ2 sin2 φ and divide by fgq. The result satisfies:

q ′′

q
= −sin2 φ

f

d

dρ

(
ρ2
df

dρ

)
− sinφ

g

d

dφ

(
sinφ

dg

dφ

)
− λρ2 sin2 φ = −µ.

The first Sturm-Liouville problem is:

q ′′ + µq = 0, with q(−π) = q(π) and q ′(−π) = q ′(π).

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved
before. This has eigenvalue µ0 = 0 with eigenfunction q0(θ) = 1 and eigenvalues µm = m2 with
eigenfunctions qm(θ) = Am cos(mθ) +Bm sin(mθ).

By dividing by sin2 φ with µ = m2, we can write:

1

f

d

dρ

(
ρ2
df

dρ

)
+ ρ2λ = − 1

g sinφ

d

dφ

(
sinφ

dg

dφ

)
+

m2

sin2 φ
= ν,

which gives the remaining two Sturm-Liouville problems.

d

dρ

(
ρ2
df

dρ

)
+
(
λρ2 − ν

)
f = 0

and
d

dφ

(
sinφ

dg

dφ

)
+

(
ν sinφ− m2

sinφ

)
g = 0.



First we solve the SL Problem in φ by letting x = cosφ (with 0 < φ < π or −1 < x < 1). From
the chain rule we have:

dg

dφ
=
dg

dx

dx

dφ
= − sinφ

dg

dx
= −

√
1− x2 dg

dx
.

It follows that the SL Problem in φ is transformed to an ODE in x by

− sinφ
d

dx

(
sinφ

(
− sinφ

dg

dφ

))
+ sinφ

(
ν − m2

sin2 φ

)
g = 0

or Legendre’s equation:

d

dx

(
(1− x2)dg

dφ

)
+

(
ν − m2

1− x2

)
g = 0,

which has the BCs g(1) and g(−1) are bounded. This has eigenvalues νn = n(n + 1), giving
the general solution:

g(x) = c1P
m
n (x) + c2Q

m
n (x),

which are associated Legendre functions. Only the polynomial Pmn (x) is bounded at x = ±1,
which gives the eigenfunctions:

gmn(x) = Pmn (x) or gmn(φ) = Pmn (cosφ), m = 0, 1, 2, ... and n ≥ m.

The orthogonality condition for these associated Legendre polynomials is:∫ π

0
Pmn (cosφ)Pmp (cosφ) sinφdφ = 0, n 6= p.

The radial SL-problem (ρ) has ν = n(n+ 1), so we have:

d

dρ

(
ρ2
df

dρ

)
+
(
λρ2 − n(n+ 1)

)
f = 0, with n ≥ m.

This is again a form of Bessel’s equation producing spherical Bessel functions. The only bounded
solution at ρ = 0 is:

f(ρ) = ρ−1/2Jn+ 1
2

(√
λρ
)
.

If the kth zero of the n + 1
2 spherical Bessel function is denoted znk (so Jn+ 1

2
(znk) = 0), then

the eigenvalues and eigenfunctions are:

λnk =
(znk
a

)2
and fnk(ρ) = ρ−1/2Jn+ 1

2

(√
λnkρ

)
, n ≥ m and k = 1, 2, ...

The orthogonality condition for these spherical Bessel functions is:∫ a

0
Jn+ 1

2

(√
λnjρ

)
Jn+ 1

2

(√
λnkρ

)
ρ dρ = 0, j 6= k.



The Superposition principle gives:

u(ρ, θ, φ, t) =
∞∑
k=1

∞∑
n=0

Ak0nρ
−1/2Jn+ 1

2

(√
λnkρ

)
P 0
n(cosφ) cos

(
c
√
λnkt

)
+

∞∑
k=1

∞∑
m=1

∞∑
n=m

(Akmn cos(mθ) +Bkmn sin(mθ)) ρ−1/2Jn+ 1
2

(√
λnkρ

)
×

Pmn (cosφ) cos
(
c
√
λnkt

)
.

The initial position is given by u(ρ, θ, φ, 0) = F (ρ, φ) cos 3θ, so our orthogonality conditions can
be readily applied to show that

Bkmn = 0 for all k,m, n, and Akmn = 0 for all k,m 6= 3, n.

We have

F (ρ, φ) =
∞∑
k=1

∞∑
n=3

Ak3nρ
−1/2Jn+ 1

2

(√
λnkρ

)
P 3
n(cosφ),

where

Ak3n =

∫ a
0

∫ π
0 F (ρ, φ)Jn+ 1

2

(√
λnkρ

)
P 3
n(cosφ) sinφ ρ3/2dφ dρ∫ π

0 (P 3
n(cosφ))2 sinφdφ

∫ a
0 ρ
(
Jn+ 1

2

(√
λnkρ

))2
dρ

.

Thus, the solution satisfies:

u(ρ, θ, φ, t) =

∞∑
k=1

∞∑
n=3

Ak3nρ
−1/2Jn+ 1

2

(√
λnkρ

)
cos(3θ)P 3

n(cosφ) cos
(
c
√
λnkt

)
.

7.10.2.c. (15 pts) Solve du
dt = k∇2u inside sphere of radius a, so

∂u

∂t
= k

(
1

ρ2
∂

∂ρ

(
ρ2
∂u

∂ρ

)
+

1

ρ2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
+

1

ρ2 sin2 φ

∂2u

∂θ2

)
.

The BC is u(a, θ, φ, t) = 0 with IC u(ρ, θ, φ, 0) = F (ρ, θ) cos θ. The implicit BCs are |u(0, θ, φ, t)| <
∞, u(ρ,−π, φ, t) = u(ρ, π, φ, t), ∂u∂θ (ρ,−π, φ, t) = ∂u

∂θ (ρ, π, φ, t), |u(ρ, θ, 0, t)| <∞, and |u(ρ, θ, π, t)| <
∞.

This analysis parallels the previous problem. We apply separation of variables by letting
u(ρ, θ, φ, t) = h(t)f(ρ)q(θ)g(φ). Initially, we have:

h ′

kh
=
∇2(fgq)

fgq
= −λ, so h ′ + kλh = 0.

For λ > 0, the solution of the t-equation is:

h(t) = Ae−kλt.



The spatial variables give:

gq

ρ2
d

dρ

(
ρ2
df

dρ

)
+

fq

ρ2 sinφ

d

dφ

(
sinφ

dg

dφ

)
+

fg

ρ2 sin2 φ

d2q

dθ2
+ λfgq = 0,

so we multiply by ρ2 sin2 φ and divide by fgq. The result satisfies:

q ′′

q
= −sin2 φ

f

d

dρ

(
ρ2
df

dρ

)
− sinφ

g

d

dφ

(
sinφ

dg

dφ

)
− λρ2 sin2 φ = −µ.

The first Sturm-Liouville problem is:

q ′′ + µq = 0, with q(−π) = q(π) and q ′(−π) = q ′(π).

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved
before. This has eigenvalue µ0 = 0 with eigenfunction q0(θ) = 1 and eigenvalues µm = m2 with
eigenfunctions qm(θ) = Am cos(mθ) +Bm sin(mθ).

By dividing by sin2 φ with µ = m2, we can write:

1

f

d

dρ

(
ρ2
df

dρ

)
+ ρ2λ = − 1

g sinφ

d

dφ

(
sinφ

dg

dφ

)
+

m2

sin2 φ
= ν,

which gives the remaining two Sturm-Liouville problems.

d

dρ

(
ρ2
df

dρ

)
+
(
λρ2 − ν

)
f = 0

and
d

dφ

(
sinφ

dg

dφ

)
+

(
ν sinφ− m2

sinφ

)
g = 0.

First we solve the SL Problem in φ by letting x = cosφ (with 0 < φ < π or −1 < x < 1). From
the chain rule we have:

dg

dφ
=
dg

dx

dx

dφ
= − sinφ

dg

dx
= −

√
1− x2 dg

dx
.

It follows that the SL Problem in φ is transformed to an ODE in x by

− sinφ
d

dx

(
sinφ

(
− sinφ

dg

dφ

))
+ sinφ

(
ν − m2

sin2 φ

)
g = 0

or Legendre’s equation:

d

dx

(
(1− x2)dg

dφ

)
+

(
ν − m2

1− x2

)
g = 0,

which has the BCs g(1) and g(−1) are bounded. This has eigenvalues νn = n(n + 1), giving
the general solution:

g(x) = c1P
m
n (x) + c2Q

m
n (x),

which are associated Legendre functions. Only the polynomial Pmn (x) is bounded at x = ±1,
which gives the eigenfunctions:

gmn(x) = Pmn (x) or gmn(φ) = Pmn (cosφ), m = 0, 1, 2, ... and n ≥ m.



The orthogonality condition for these associated Legendre polynomials is:∫ π

0
Pmn (cosφ)Pmp (cosφ) sinφdφ = 0, n 6= p.

The radial SL-problem (ρ) has ν = n(n+ 1), so we have:

d

dρ

(
ρ2
df

dρ

)
+
(
λρ2 − n(n+ 1)

)
f = 0, with n ≥ m.

This is again a form of Bessel’s equation producing spherical Bessel functions. The only bounded
solution at ρ = 0 is:

f(ρ) = ρ−1/2Jn+ 1
2

(√
λρ
)
.

If the jth zero of the n + 1
2 spherical Bessel function is denoted znj (so Jn+ 1

2
(znj) = 0), then

the eigenvalues and eigenfunctions are:

λnj =
(znj
a

)2
and fnj(ρ) = ρ−1/2Jn+ 1

2

(√
λnjρ

)
, n ≥ m and j = 1, 2, ...

The orthogonality condition for these spherical Bessel functions is:∫ a

0
Jn+ 1

2

(√
λniρ

)
Jn+ 1

2

(√
λnjρ

)
ρ dρ = 0, i 6= j.

The Superposition principle gives:

u(ρ, θ, φ, t) =
∞∑
j=1

∞∑
n=0

Aj0nρ
−1/2Jn+ 1

2

(√
λnjρ

)
P 0
n(cosφ)e−kλnjt +

∞∑
j=1

∞∑
m=1

∞∑
n=m

(Ajmn cos(mθ) +Bjmn sin(mθ)) ρ−1/2Jn+ 1
2

(√
λnjρ

)
×

Pmn (cosφ)e−kλnjt.

The initial position is given by u(ρ, θ, φ, 0) = F (ρ, φ) cos θ, so our orthogonality conditions can
be readily applied to show that

Bjmn = 0 for all j,m, n, and Ajmn = 0 for all j,m 6= 1, n.

We have

F (ρ, φ) =

∞∑
j=1

∞∑
n=1

Aj1nρ
−1/2Jn+ 1

2

(√
λnjρ

)
P 1
n(cosφ),

where

Aj1n =

∫ a
0

∫ π
0 F (ρ, φ)Jn+ 1

2

(√
λnjρ

)
P 1
n(cosφ) sinφ ρ3/2dφ dρ∫ π

0 (P 1
n(cosφ))2 sinφdφ

∫ a
0 ρ
(
Jn+ 1

2

(√
λnjρ

))2
dρ

.



Thus, the solution satisfies:

u(ρ, θ, φ, t) =

∞∑
j=1

∞∑
n=1

Aj1nρ
−1/2Jn+ 1

2

(√
λnjρ

)
cos(θ)P 1

n(cosφ)e−kλnjt.

7.10.8 (10 pts) The ODE related to Bessel’s equation is:

x2
d2f

dx2
+ x(1− 2a− 2bx)

df

dx
+
(
a2 − p2 + (2a− 1)bx+ (d2 + b2)x2

)
f = 0. (1)

When f(x) = xaebxZp(dx), we want to find parameters a, b, d, and p, so Zp(x) solves Bessel’s
equation:

x2Zp
′′ + xZp

′ + (x2 − p2)Zp = 0.

With this form of f(x), we have:

f ′(x) = axa−1ebxZp(dx) + xabebxZp(dx) + xaebxdZp
′(dx)

= xa−1ebx
(
(a+ bx)Zp(dx) + dxZp

′(dx)
)
,

and

f ′′(x) = a(a− 1)xa−2ebxZp(dx) + 2abxa−1ebxZp(dx) + b2xaebxdZp(dx)

+2adxa−1ebxZp
′(dx) + 2bdxaebxZp

′(dx) + d2xaebxZp
′′(dx)

= xa−2ebx
(
(a(a− 1) + 2abx+ b2x2)Zp(dx)+

2d(ax+ bx2)Zp
′(dx) + d2x2Zp

′′(dx)
)
.

These are substituted into Eq. (1) giving:

xaebx
(
(a(a− 1) + 2abx+ b2x2)Zp(dx) + 2d(ax+ bx2)Zp

′(dx) + d2x2Zp
′′(dx)

)
(1− 2a− 2bx)xaebx

(
(a+ bx)Zp(dx) + dxZp

′(dx)
)(

a2 − p2 + (2a− 1)bx+ (d2 + b2)x2
)
xaebxZp(dx) = 0,

which after cancellation is equivalent to

d2x2Zp
′′(dx) + dxZp

′(dx) + (d2x2 − p2)Zp(dx) = 0.

For y = dx, this has the solution Zp(y) to Bessel’s equation.

The radial SL-problem for the spherical problem has the form:

x2f ′′ + 2xf ′ + (λx− n(n+ 1)) f = 0.

For Eq. (1) to have the same form as the spherical ODE, we need 1 − 2a − 2bx = 2, so b = 0
and a = −1

2 from the coefficient of f ′. From the coefficient of f with a and b above, we need

d2 = λ or d =
√
λ and 1

4 − p
2 = −n(n + 1) or p2 = n2 + n + 1

4 =
(
n+ 1

2

)2
or p = n + 1

2 . It
follows that

f(x) = x−1/2e0xJn+ 1
2

(√
λx
)

= x−1/2Jn+ 1
2

(√
λx
)
,

which matches the solution for the spherical Bessel function.



7.10.9.a (10 pts) Consider Laplace’s equation inside a sphere ∇2u = 0 of radius a, so

1

ρ2
∂

∂ρ

(
ρ2
∂u

∂ρ

)
+

1

ρ2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
+

1

ρ2 sin2 φ

∂2u

∂θ2
= 0.

The BC’s are u(a, θ, φ, t) = F (φ) cos(4θ) with implicit BCs |u(0, θ, φ, t)| < ∞, u(ρ,−π, φ, t) =
u(ρ, π, φ, t), ∂u

∂θ (ρ,−π, φ, t) = ∂u
∂θ (ρ, π, φ, t), |u(ρ, θ, 0, t)| <∞, and |u(ρ, θ, π, t)| <∞.

This analysis parallels the first two problems. We apply separation of variables by letting
u(ρ, θ, φ) = f(ρ)q(θ)g(φ). We have:

gq

ρ2
d

dρ

(
ρ2
df

dρ

)
+

fq

ρ2 sinφ

d

dφ

(
sinφ

dg

dφ

)
+

fg

ρ2 sin2 φ

d2q

dθ2
= 0,

so we multiply by ρ2 sin2 φ and divide by fgq. The result satisfies:

q ′′

q
= −sin2 φ

f

d

dρ

(
ρ2
df

dρ

)
− sinφ

g

d

dφ

(
sinφ

dg

dφ

)
= −µ.

The first Sturm-Liouville problem is:

q ′′ + µq = 0, with q(−π) = q(π) and q ′(−π) = q ′(π).

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved
before. This has eigenvalue µ0 = 0 with eigenfunction q0(θ) = 1 and eigenvalues µm = m2 with
eigenfunctions qm(θ) = Am cos(mθ) +Bm sin(mθ).

By dividing by sin2 φ with µ = m2, we can write:

1

f

d

dρ

(
ρ2
df

dρ

)
= − 1

g sinφ

d

dφ

(
sinφ

dg

dφ

)
+

m2

sin2 φ
= ν,

which gives the remaining two ODEs.

d

dρ

(
ρ2
df

dρ

)
− νf = 0

and
d

dφ

(
sinφ

dg

dφ

)
+

(
ν sinφ− m2

sinφ

)
g = 0.

First we solve the SL Problem in φ by letting x = cosφ (with 0 < φ < π or −1 < x < 1). From
the chain rule we have:

dg

dφ
=
dg

dx

dx

dφ
= − sinφ

dg

dx
= −

√
1− x2 dg

dx
.

It follows that the SL Problem in φ is transformed to an ODE in x by

− sinφ
d

dx

(
sinφ

(
− sinφ

dg

dφ

))
+ sinφ

(
ν − m2

sin2 φ

)
g = 0

or Legendre’s equation:

d

dx

(
(1− x2)dg

dφ

)
+

(
ν − m2

1− x2

)
g = 0,



which has the BCs g(1) and g(−1) are bounded. This has eigenvalues νn = n(n + 1), giving
the general solution:

g(x) = c1P
m
n (x) + c2Q

m
n (x),

which are associated Legendre functions. Only the polynomial Pmn (x) is bounded at x = ±1,
which gives the eigenfunctions:

gmn(x) = Pmn (x) or gmn(φ) = Pmn (cosφ), m = 0, 1, 2, ... and n ≥ m.

The orthogonality condition for these associated Legendre polynomials is:∫ π

0
Pmn (cosφ)Pmp (cosφ) sinφdφ = 0, n 6= p.

The radial problem (ρ) has ν = n(n+ 1), so we have:

d

dρ

(
ρ2
df

dρ

)
− n(n+ 1))f = 0, with n = 1, 2, ...

This is a Cauchy-Euler equation, so try a solution of the form f(ρ) = ρr. It follows that:

ρ2r(r − 1)ρr−2 + 2ρrρr−1 − n(n+ 1)ρr = 0,

which gives the auxiliary equation r2 + r − n(n + 1) = 0, so r = n or −(n + 1). Thus, the
solution is:

f(ρ) = c1ρ
n + c2ρ

−(n+1).

The bounded BC implies c2 = 0, so fn(ρ) = ρn.

The Superposition principle gives:

u(ρ, θ, φ) =

∞∑
n=1

A0nρ
nP 0

n(cosφ) +

∞∑
m=1

∞∑
n=m

(Amn cos(mθ) +Bmn sin(mθ)) ρnPmn (cosφ).

The nonhomogeneous BC gives:

u(a, θ, φ) =

∞∑
n=1

A0na
nP 0

n(cosφ) +

∞∑
m=1

∞∑
n=m

(Amn cos(mθ) +Bmn sin(mθ)) anPmn (cosφ)

= F (φ) cos(4θ).

Orthogonality gives Bmn = 0 for all m and n and Amn = 0 for m 6= 4. It follows that:

F (φ) =

∞∑
n=4

A4na
nP 4

n(cosφ).

The Fourier coefficients are:

A4n =

∫ π
0 F (φ)P 4

n(cosφ) sinφdφ

an
∫ π
0 (P 4

n(cosφ))2 sinφdφ
.

Thus, the solution satisfies:

u(ρ, θ, φ) = ρn cos(4θ)

∞∑
n=4

A4nP
4
n(cosφ).


