7.7.1 (15 pts) Consider the vibrating membrane satisfying

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u=c^{2}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right),
$$

with $\mathrm{BC} u(a, \theta, t)=0$ and ICs $u(r, \theta, 0)=0$ and $\frac{\partial u}{\partial t}(r, \theta, 0)=\alpha(r) \sin (3 \theta)$. We apply separation of variables: $u(r, \theta, t)=\phi(r) g(\theta) h(t)$, which gives

$$
\phi g h^{\prime \prime}=c^{2}\left(\frac{g h}{r} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+\frac{\phi h}{r^{2}} \frac{d^{2} g}{d \theta^{2}}\right),
$$

which is equivalent to

$$
\frac{h^{\prime \prime}}{c^{2} h}=\left(\frac{1}{r \phi} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+\frac{1}{r^{2} g} \frac{d^{2} g}{d \theta^{2}}\right)=-\lambda .
$$

This leads to the t-equation: $h^{\prime \prime}+\lambda c^{2} h=0$, which has the solution:

$$
h(t)=c_{1} \cos (c \sqrt{\lambda} t)+c_{2} \sin (c \sqrt{\lambda} t) .
$$

A second separation of variables gives two Sturm-Liouville problems:

$$
\frac{r}{\phi} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+r^{2} \lambda=-\frac{g^{\prime \prime}}{g}=\mu
$$

The first Sturm-Liouville problem is:

$$
g^{\prime \prime}+\mu g=0, \quad \text { with } \quad g(-\pi)=g(\pi) \quad \text { and } \quad g^{\prime}(-\pi)=g^{\prime}(\pi) .
$$

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved before. This has eigenvalue $\mu_{0}=0$ with eigenfunction $g_{0}(\theta)=1$ and eigenvalues $\mu_{m}=m^{2}$ with eigenfunctions $g_{m}(\theta)=a_{m} \cos (m \theta)+b_{m} \sin (m \theta)$.

The second Sturm-Liouville problem is:

$$
r \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+r^{2} \sqrt{\lambda} \phi-m^{2} \phi=0
$$

which is Bessel's equation of order m. This has the general solution:

$$
\phi(r)=c_{1} J_{m}(\sqrt{\lambda} r)+c_{2} Y_{m}(\sqrt{\lambda} r) .
$$

The boundedness condition at the origin requires $c_{2}=0$, so the eigenvalue problem gives:

$$
\phi_{m n}(r)=c_{1} J_{m}\left(\sqrt{\lambda_{m n}} r\right)
$$

where $J_{m}\left(\sqrt{\lambda_{m n}} a\right)=0$ with $\lambda_{m n}=\left(\frac{z_{m n}}{a}\right)^{2}>0$ with $z_{m n}$ being the $n^{\text {th }}$ zero of $m^{\text {th }}$ order Bessel function $\left(J_{m}\left(z_{m n}\right)=0\right)$.

The Superposition principle gives:

$$
\begin{aligned}
u(r, \theta, t)= & \sum_{n=1}^{\infty} J_{0}\left(\sqrt{\lambda_{0 n}} r\right)\left(A_{0 n} \cos \left(c \sqrt{\lambda_{0 n}} t\right)+B_{0 n} \sin \left(c \sqrt{\lambda_{0 n}} t\right)\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \cos (m \theta) J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(A_{m n} \cos \left(c \sqrt{\lambda_{m n}} t\right)+B_{m n} \sin \left(c \sqrt{\lambda_{m n}} t\right)\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sin (m \theta) J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(C_{m n} \cos \left(c \sqrt{\lambda_{m n}} t\right)+D_{m n} \sin \left(c \sqrt{\lambda_{m n}} t\right)\right) .
\end{aligned}
$$

The initial displacement is zero $(u(r, \theta, 0)=0)$, which gives $A_{m n}=0$ for $m=0,1,2 \ldots$ and $n=1,2, \ldots$ and $C_{m n}=0$ for $m=1,2 \ldots$ and $n=1,2, \ldots$. This reduces our solution to

$$
\begin{aligned}
u(r, \theta, t)= & \sum_{n=1}^{\infty} B_{0 n} J_{0}\left(\sqrt{\lambda_{0 n}} r\right) \sin \left(c \sqrt{\lambda_{0 n}} t\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(B_{m n} \cos (m \theta)+D_{m n} \sin (m \theta)\right) \sin \left(c \sqrt{\lambda_{m n}} t\right)
\end{aligned}
$$

The initial velocity gives $\frac{\partial u}{\partial t}(r, \theta, 0)=\alpha(r) \sin (3 \theta)$. From the solution above we have

$$
\begin{aligned}
\frac{\partial u}{\partial t}(r, \theta, t)= & \sum_{n=1}^{\infty} c \sqrt{\lambda_{0 n}} B_{0 n} J_{0}\left(\sqrt{\lambda_{0 n}} r\right) \cos \left(c \sqrt{\lambda_{0 n}} t\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c \sqrt{\lambda_{m n}} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(B_{m n} \cos (m \theta)+D_{m n} \sin (m \theta)\right) \cos \left(c \sqrt{\lambda_{m n}} t\right)
\end{aligned}
$$

which when evaluated at $t=0$ gives:

$$
\begin{aligned}
\frac{\partial u}{\partial t}(r, \theta, 0)= & \sum_{n=1}^{\infty} c \sqrt{\lambda_{0 n}} B_{0 n} J_{0}\left(\sqrt{\lambda_{0 n}} r\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c \sqrt{\lambda_{m n}} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(B_{m n} \cos (m \theta)+D_{m n} \sin (m \theta)\right) \\
= & \alpha(r) \sin (3 \theta)
\end{aligned}
$$

Orthogonality of the eigenfunctions in θ implies that $B_{m n}=0$ for $m=0,1,2, \ldots$ and $n=1,2, \ldots$, and $D_{m n}=0$ for all $m \neq 3$ and $n=1,2, \ldots$ The only nonzero coefficients are:

$$
D_{3 n}=\frac{\int_{0}^{a} \alpha(r) J_{3}\left(\sqrt{\lambda_{3 n}} r\right) r d r}{c \sqrt{\lambda_{3 n}} \int_{0}^{a} J_{3}^{2}\left(\sqrt{\lambda_{3 n}} r\right) r d r} .
$$

With these Fourier coefficients, it follows that the solution satisfies:

$$
u(r, \theta, t)=\sum_{n=1}^{\infty} D_{3 n} J_{3}\left(\sqrt{\lambda_{3 n}} r\right) \sin (3 \theta) \sin \left(c \sqrt{\lambda_{3 n}} t\right) .
$$

7.7.2.a. (15 pts) Consider the circular membrane:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u=c^{2}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right),
$$

with BC $\frac{\partial u}{\partial r}(a, \theta, t)=0$ and ICs $u(r, \theta, 0)=0$ and $\frac{\partial u}{\partial t}(r, \theta, 0)=\beta(r) \cos (5 \theta)$. This begins just like Problem 7.7.1. We apply separation of variables: $u(r, \theta, t)=\phi(r) g(\theta) h(t)$, which gives

$$
\phi g h^{\prime \prime}=c^{2}\left(\frac{g h}{r} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+\frac{\phi h}{r^{2}} \frac{d^{2} g}{d \theta^{2}}\right),
$$

which is equivalent to

$$
\frac{h^{\prime \prime}}{c^{2} h}=\left(\frac{1}{r \phi} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+\frac{1}{r^{2} g} \frac{d^{2} g}{d \theta^{2}}\right)=-\lambda .
$$

This leads to the t-equation: $h^{\prime \prime}+\lambda c^{2} h=0$, which has the solution:

$$
h(t)= \begin{cases}c_{1} t+c_{2}, & \lambda=0 \\ c_{1} \cos (c \sqrt{\lambda} t)+c_{2} \sin (c \sqrt{\lambda} t), & \lambda>0\end{cases}
$$

A second separation of variables gives two Sturm-Liouville problems:

$$
\frac{r}{\phi} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+r^{2} \lambda=-\frac{g^{\prime \prime}}{g}=\mu
$$

The first Sturm-Liouville problem is:

$$
g^{\prime \prime}+\mu g=0, \quad \text { with } \quad g(-\pi)=g(\pi) \quad \text { and } \quad g^{\prime}(-\pi)=g^{\prime}(\pi) .
$$

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved before. This has eigenvalue $\mu_{0}=0$ with eigenfunction $g_{0}(\theta)=1$ and eigenvalues $\mu_{m}=m^{2}$ with eigenfunctions $g_{m}(\theta)=a_{m} \cos (m \theta)+b_{m} \sin (m \theta)$.

The second Sturm-Liouville problem is:

$$
r \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+r^{2} \sqrt{\lambda} \phi-m^{2} \phi=0
$$

which is Bessel's equation of order m. This has the general solution:

$$
\phi(r)= \begin{cases}d_{1}+d_{2} \ln (r), & \lambda=0 \quad \text { and } \quad m=0, \\ d_{1} J_{m}(\sqrt{\lambda} r)+d_{2} Y_{m}(\sqrt{\lambda} r), & \lambda>0 \quad \text { and } \quad m=0,1,2, \ldots\end{cases}
$$

The boundedness condition at the origin requires $d_{2}=0$, so

$$
\phi^{\prime}(r)= \begin{cases}0, & \lambda=0 \quad \text { and } \quad m=0, \\ d_{1} \sqrt{\lambda} J_{m}^{\prime}(\sqrt{\lambda} r), & \lambda>0 \quad \text { and } \quad m=0,1,2, \ldots\end{cases}
$$

The BVP requires $\phi^{\prime}(a)=0$, so one eigenfunction is

$$
\phi_{00}(r)=1, \quad \text { with } \quad \lambda=0 \quad \text { and } \quad m=0
$$

The other eigenfunctions, where $\lambda>0$ and $m=0,1,2, \ldots$, are

$$
\phi_{m n}(r)=J_{m}\left(\sqrt{\lambda_{m n}} r\right),
$$

where $J_{m}^{\prime}\left(\sqrt{\lambda_{m n}} a\right)=0$ with $\lambda_{m n}=\left(\frac{z_{m n}}{a}\right)^{2}$ with $z_{m n}$ being the $n^{t h}$ zero of the derivative of $m^{t h}$ order Bessel function $\left(J_{m}^{\prime}\left(z_{m n}\right)=0\right)$.

The Superposition principle gives:

$$
\begin{aligned}
u(r, \theta, t)= & A_{1} t+A_{0}+\sum_{n=1}^{\infty} J_{0}\left(\sqrt{\lambda_{0 n}} r\right)\left(B_{0 n} \cos \left(c \sqrt{\lambda_{0 n}} t\right)+C_{0 n} \sin \left(c \sqrt{\lambda_{0 n}} t\right)\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \cos (m \theta) J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(B_{m n} \cos \left(c \sqrt{\lambda_{m n}} t\right)+C_{m n} \sin \left(c \sqrt{\lambda_{m n}} t\right)\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sin (m \theta) J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(D_{m n} \cos \left(c \sqrt{\lambda_{m n}} t\right)+E_{m n} \sin \left(c \sqrt{\lambda_{m n}} t\right)\right)
\end{aligned}
$$

The initial displacement is zero $(u(r, \theta, 0)=0)$, which gives $A_{0}=0, B_{m n}=0$ for $m=0,1,2 \ldots$ and $n=1,2, \ldots$ and $D_{m n}=0$ for $m=1,2 \ldots$ and $n=1,2, \ldots$ This reduces our solution to

$$
\begin{aligned}
u(r, \theta, t)= & A_{1} t+\sum_{n=1}^{\infty} C_{0 n} J_{0}\left(\sqrt{\lambda_{0 n}} r\right) \sin \left(c \sqrt{\lambda_{0 n}} t\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(C_{m n} \cos (m \theta)+E_{m n} \sin (m \theta)\right) \sin \left(c \sqrt{\lambda_{m n}} t\right)
\end{aligned}
$$

The initial velocity gives $\frac{\partial u}{\partial t}(r, \theta, 0)=\beta(r) \cos (5 \theta)$. From the solution above we have

$$
\begin{aligned}
\frac{\partial u}{\partial t}(r, \theta, t)= & A_{1}+\sum_{n=1}^{\infty} c \sqrt{\lambda_{0 n}} C_{0 n} J_{0}\left(\sqrt{\lambda_{0 n}} r\right) \cos \left(c \sqrt{\lambda_{0 n}} t\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c \sqrt{\lambda_{m n}} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(C_{m n} \cos (m \theta)+E_{m n} \sin (m \theta)\right) \cos \left(c \sqrt{\lambda_{m n}} t\right)
\end{aligned}
$$

which when evaluated at $t=0$ gives:

$$
\begin{aligned}
\frac{\partial u}{\partial t}(r, \theta, 0)= & A_{1}+\sum_{n=1}^{\infty} c \sqrt{\lambda_{0 n}} C_{0 n} J_{0}\left(\sqrt{\lambda_{0 n}} r\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c \sqrt{\lambda_{m n}} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(C_{m n} \cos (m \theta)+E_{m n} \sin (m \theta)\right) \\
= & \beta(r) \cos (5 \theta)
\end{aligned}
$$

Orthogonality of the eigenfunctions in θ implies that $A_{1}=0, C_{m n}=0$ for $m \neq 5$ and $n=1,2, \ldots$, and $E_{m n}=0$ for $m=1,2, \ldots$ and $n=1,2, \ldots$ The only nonzero coefficients are:

$$
C_{5 n}=\frac{\int_{0}^{a} \beta(r) J_{5}\left(\sqrt{\lambda_{5 n}} r\right) r d r}{c \sqrt{\lambda_{5 n}} \int_{0}^{a} J_{5}^{2}\left(\sqrt{\lambda_{5 n}} r\right) r d r}
$$

With these Fourier coefficients, it follows that the solution satisfies:

$$
u(r, \theta, t)=\sum_{n=1}^{\infty} C_{5 n} J_{5}\left(\sqrt{\lambda_{5 n}} r\right) \cos (5 \theta) \sin \left(c \sqrt{\lambda_{5 n}} t\right)
$$

7.9.1.c. (15 pts) Consider Laplace's equation on a cylinder:

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

with BCs $u(r, \theta, 0)=0, u(r, \theta, H)=\beta(r) \cos (3 \theta)$, and $\frac{\partial u}{\partial r}(a, \theta, z)=0$ (insulated). There are implicit BCs $u(r,-\pi, z)=u(r, \pi, z), u_{\theta}(r,-\pi, z)=u_{\theta}(r, \pi, z)$, and $u(0, \theta, z)$ bounded. We apply separation of variables $u(r, \theta, z)=\phi(r) g(\theta) h(z)$, giving:

$$
\frac{g h}{r} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+\frac{\phi h g^{\prime \prime}}{r^{2}}+\phi g h^{\prime \prime}=0, \quad \text { or } \quad \frac{1}{r \phi} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+\frac{g^{\prime \prime}}{r^{2} g}=-\frac{h^{\prime \prime}}{h}=-\lambda .
$$

This gives the z equation: $h^{\prime \prime}-\lambda h=0$, which has the solution:

$$
h(z)= \begin{cases}c_{1} z+c_{2}, & \lambda=0 \\ c_{1} \cosh (\sqrt{\lambda} z)+c_{2} \sinh (\sqrt{\lambda} z), & \lambda>0\end{cases}
$$

A second separation gives two Sturm-Liouville problems:

$$
\frac{r}{\phi} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+\lambda r^{2}=-\frac{g^{\prime \prime}}{g}=\mu
$$

The first Sturm-Liouville problem is:

$$
g^{\prime \prime}+\mu g=0, \quad \text { with } \quad g(-\pi)=g(\pi) \quad \text { and } \quad g^{\prime}(-\pi)=g^{\prime}(\pi) .
$$

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved before. This has eigenvalue $\mu_{0}=0$ with eigenfunction $g_{0}(\theta)=1$ and eigenvalues $\mu_{m}=m^{2}$ with eigenfunctions $g_{m}(\theta)=a_{m} \cos (m \theta)+b_{m} \sin (m \theta)$.

The second Sturm-Liouville problem is:

$$
r \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+r^{2} \sqrt{\lambda} \phi-m^{2} \phi=0
$$

which is Bessel's equation of order m. This has the general solution:

$$
\phi(r)= \begin{cases}d_{1}+d_{2} \ln (r), & \lambda=0 \quad \text { and } \quad m=0, \\ d_{1} J_{m}(\sqrt{\lambda} r)+d_{2} Y_{m}(\sqrt{\lambda} r), & \lambda>0 \quad \text { and } \quad m=0,1,2, \ldots\end{cases}
$$

The boundedness condition at the origin requires $d_{2}=0$, so

$$
\phi^{\prime}(r)= \begin{cases}0, & \lambda=0 \quad \text { and } \quad m=0, \\ d_{1} \sqrt{\lambda} J_{m}^{\prime}(\sqrt{\lambda} r), & \lambda>0 \quad \text { and } \quad m=0,1,2, \ldots\end{cases}
$$

The BVP requires $\phi^{\prime}(a)=0$, so one eigenfunction is

$$
\phi_{00}(r)=1, \quad \text { with } \quad \lambda=0 \quad \text { and } \quad m=0 .
$$

The other eigenfunctions, where $\lambda>0$ and $m=0,1,2, \ldots$, are

$$
\phi_{m n}(r)=J_{m}\left(\sqrt{\lambda_{m n}} r\right),
$$

where $J_{m}^{\prime}\left(\sqrt{\lambda_{m n}} a\right)=0$ with $\lambda_{m n}=\left(\frac{z_{m n}}{a}\right)^{2}$ with $z_{m n}$ being the $n^{t h}$ zero of the derivative of $m^{t h}$ order Bessel function $\left(J_{m}^{\prime}\left(z_{m n}\right)=0\right)$.

The Superposition principle gives:

$$
\begin{aligned}
u(r, \theta, z)= & A_{1} z+A_{0}+\sum_{n=1}^{\infty} J_{0}\left(\sqrt{\lambda_{0 n}} r\right)\left(B_{0 n} \cosh \left(\sqrt{\lambda_{0 n}} z\right)+C_{0 n} \sinh \left(\sqrt{\lambda_{0 n}} z\right)\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \cos (m \theta) J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(B_{m n} \cosh \left(\sqrt{\lambda_{m n}} z\right)+C_{m n} \sinh \left(\sqrt{\lambda_{m n}} z\right)\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sin (m \theta) J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(D_{m n} \cosh \left(\sqrt{\lambda_{m n}} z\right)+E_{m n} \sinh \left(\sqrt{\lambda_{m n}} z\right)\right)
\end{aligned}
$$

The homogeneous BC on the bottom of the cylinder, $u(r, \theta, 0)=0$, gives $A_{0}=0, B_{m n}=0$ for $m=0,1,2 \ldots$ and $n=1,2, \ldots$ and $D_{m n}=0$ for $m=1,2 \ldots$ and $n=1,2, \ldots$. This reduces our solution to

$$
\begin{aligned}
u(r, \theta, z)= & A_{1} z+\sum_{n=1}^{\infty} C_{0 n} J_{0}\left(\sqrt{\lambda_{0 n}} r\right) \sinh \left(\sqrt{\lambda_{0 n}} z\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(C_{m n} \cos (m \theta)+E_{m n} \sin (m \theta)\right) \sinh \left(\sqrt{\lambda_{m n}} z\right)
\end{aligned}
$$

The BC at the top of the cylinder gives $u(r, \theta, H)=\beta(r) \cos (3 \theta)$. From the solution above we have

$$
\begin{aligned}
u(r, \theta, H)= & A_{1} H+\sum_{n=1}^{\infty} C_{0 n} J_{0}\left(\sqrt{\lambda_{0 n}} r\right) \sinh \left(\sqrt{\lambda_{0 n}} H\right) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left(C_{m n} \cos (m \theta)+E_{m n} \sin (m \theta)\right) \sinh \left(\sqrt{\lambda_{m n}} H\right) \\
= & \beta(r) \cos (3 \theta)
\end{aligned}
$$

Orthogonality of the eigenfunctions in θ implies that $A_{1}=0, C_{m n}=0$ for $m \neq 3$ and $n=1,2, \ldots$, and $E_{m n}=0$ for $m=1,2, \ldots$ and $n=1,2, \ldots$ The only nonzero coefficients are:

$$
C_{3 n}=\frac{\int_{0}^{a} \beta(r) J_{3}\left(\sqrt{\lambda_{3 n}} r\right) r d r}{\sinh \left(\sqrt{\lambda_{3 n}} H\right) \int_{0}^{a} J_{3}^{2}\left(\sqrt{\lambda_{3 n}} r\right) r d r}
$$

With these Fourier coefficients, it follows that the solution satisfies:

$$
u(r, \theta, z)=\sum_{n=1}^{\infty} C_{3 n} J_{3}\left(\sqrt{\lambda_{3 n}} r\right) \cos (3 \theta) \sinh \left(\sqrt{\lambda_{3 m n}} H\right)
$$

7.9.2.b. (15 pts) Consider the semi-circular cylinder:

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

with BCs $u(r, \theta, 0)=0, \frac{\partial u}{\partial z}(r, \theta, H)=0, u(r, 0, z)=0, u(r, \pi, z)=0$, and $u(a, \theta, z)=\beta(\theta, z)$. There is an implicit BC that $u(0, \theta, z)$ is bounded. We apply separation of variables $u(r, \theta, z)=$ $\phi(r) g(\theta) h(z)$, giving:

$$
\frac{g h}{r} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+\frac{\phi h g^{\prime \prime}}{r^{2}}+\phi g h^{\prime \prime}=0 \quad \text { or } \quad \frac{1}{r \phi} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)+\frac{g^{\prime \prime}}{r^{2} g}=-\frac{h^{\prime \prime}}{h}=\lambda .
$$

This gives the first Sturm-Liouville problem:

$$
h^{\prime \prime}+\lambda h=0, \quad \text { with } \quad h(0)=0 \quad \text { and } \quad h^{\prime}(H)=0 .
$$

We have shown that $\lambda \leq 0$ leads only to trivial solutions. The solution is:

$$
h(z)=c_{1} \cos (\sqrt{\lambda} z)+c_{2} \sin (\sqrt{\lambda} z)
$$

The BC $h(0)=0$ implies $c_{1}=0$. The $\mathrm{BC} h^{\prime}(H)=c_{2} \sqrt{\lambda} \cos (\sqrt{\lambda} H)=0$, which for nontrivial solutions gives:

$$
\sqrt{\lambda}=\frac{(2 n-1) \pi}{2 H} \quad \text { or } \quad \lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4 H^{2}}, \quad n=1,2, \ldots \quad \text { with e.f. } \quad h(t)=\sin \left(\frac{(2 n-1) \pi z}{2 H}\right) .
$$

A second separation gives one Sturm-Liouville problem and a modified Bessel's equation:

$$
\frac{r}{\phi} \frac{d}{d r}\left(r \frac{d \phi}{d r}\right)-\lambda r^{2}=-\frac{g^{\prime \prime}}{g}=\mu
$$

The second Sturm-Liouville problem is:

$$
g^{\prime \prime}+\mu g=0, \quad \text { with } \quad g(0)=0 \quad \text { and } \quad g(\pi)=0
$$

This is a standard Dirichlet eigenvalue problem, which we have solved before. This has eigenvalues $\mu_{m}=m^{2}$ with eigenfunctions $g_{m}(\theta)=\sin (m \theta)$ for $m=1,2, \ldots$
The modified Bessel's equation is:

$$
\frac{d}{d r}\left(r \frac{d \theta}{d r}\right)+\left(-\frac{(2 n-1)^{2} \pi^{2}}{4 H^{2}} r-\frac{m^{2}}{r}\right) \phi=0
$$

which has the general solution:

$$
\phi(r)=c_{1} I_{m}\left(\frac{(2 n-1) \pi r}{2 H}\right)+c_{2} K_{m}\left(\frac{(2 n-1) \pi r}{2 H}\right)
$$

The boundedness condition implies $c_{2}=0$.
The Superposition principle gives:

$$
u(r, \theta, z)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin (m \theta) \sin \left(\frac{(2 n-1) \pi z}{2 H}\right) I_{m}\left(\frac{(2 n-1) \pi r}{2 H}\right) .
$$

The nonhomogeneous BC satisfies:

$$
\begin{aligned}
u(r, \theta, a) & =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin (m \theta) \sin \left(\frac{(2 n-1) \pi z}{2 H}\right) I_{m}\left(\frac{(2 n-1) \pi a}{2 H}\right) \\
& =\beta(\theta, z) .
\end{aligned}
$$

Using the orthogonality of the eigenfunctions, we obtain the Fourier coefficients:

$$
A_{m n}=\frac{4 \int_{0}^{\pi} \int_{0}^{H} \beta(\theta, z) \sin (m \theta) \sin \left(\frac{(2 n-1) \pi z}{2 H}\right) d z d \theta}{\pi H I_{m}\left(\frac{(2 n-1) \pi a}{2 H}\right)} .
$$

