
Spring Homework 8 Math 531

7.7.1 (15 pts) Consider the vibrating membrane satisfying

∂2u

∂t2
= c2∇2u = c2

(
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

)
,

with BC u(a, θ, t) = 0 and ICs u(r, θ, 0) = 0 and ∂u
∂t (r, θ, 0) = α(r) sin(3θ). We apply separation

of variables: u(r, θ, t) = φ(r)g(θ)h(t), which gives

φgh′′ = c2
(
gh

r

d

dr

(
r
dφ

dr

)
+
φh

r2
d2g

dθ2

)
,

which is equivalent to
h′′

c2h
=

(
1

rφ

d

dr

(
r
dφ

dr

)
+

1

r2g

d2g

dθ2

)
= −λ.

This leads to the t-equation: h′′ + λc2h = 0, which has the solution:

h(t) = c1 cos(c
√
λt) + c2 sin(c

√
λt).

A second separation of variables gives two Sturm-Liouville problems:

r

φ

d

dr

(
r
dφ

dr

)
+ r2λ = −g

′′

g
= µ.

The first Sturm-Liouville problem is:

g′′ + µg = 0, with g(−π) = g(π) and g ′(−π) = g ′(π).

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved
before. This has eigenvalue µ0 = 0 with eigenfunction g0(θ) = 1 and eigenvalues µm = m2 with
eigenfunctions gm(θ) = am cos(mθ) + bm sin(mθ).

The second Sturm-Liouville problem is:

r
d

dr

(
r
dφ

dr

)
+ r2
√
λφ−m2φ = 0,

which is Bessel’s equation of order m. This has the general solution:

φ(r) = c1Jm(
√
λr) + c2Ym(

√
λr).

The boundedness condition at the origin requires c2 = 0, so the eigenvalue problem gives:

φmn(r) = c1Jm

(√
λmnr

)
,

where Jm
(√
λmna

)
= 0 with λmn =

(
zmn
a

)2
> 0 with zmn being the nth zero of mth order Bessel

function (Jm(zmn) = 0).



The Superposition principle gives:

u(r, θ, t) =
∞∑
n=1

J0

(√
λ0nr

)(
A0n cos

(
c
√
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)
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(
c
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+
∞∑
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∞∑
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(
c
√
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)
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(
c
√
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+

∞∑
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∞∑
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(√
λmnr

)(
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(
c
√
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)
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(
c
√
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.

The initial displacement is zero (u(r, θ, 0) = 0), which gives Amn = 0 for m = 0, 1, 2... and
n = 1, 2, ... and Cmn = 0 for m = 1, 2... and n = 1, 2, .... This reduces our solution to

u(r, θ, t) =
∞∑
n=1

B0nJ0

(√
λ0nr

)
sin
(
c
√
λ0nt

)
+
∞∑
m=1

∞∑
n=1

Jm

(√
λmnr

)
(Bmn cos(mθ) +Dmn sin(mθ)) sin

(
c
√
λmnt

)
.

The initial velocity gives ∂u
∂t (r, θ, 0) = α(r) sin(3θ). From the solution above we have

∂u

∂t
(r, θ, t) =

∞∑
n=1

c
√
λ0nB0nJ0

(√
λ0nr

)
cos
(
c
√
λ0nt

)
+
∞∑
m=1

∞∑
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c
√
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(√
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)
(Bmn cos(mθ) +Dmn sin(mθ)) cos

(
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,

which when evaluated at t = 0 gives:

∂u

∂t
(r, θ, 0) =

∞∑
n=1

c
√
λ0nB0nJ0

(√
λ0nr

)
+

∞∑
m=1

∞∑
n=1

c
√
λmnJm

(√
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)
(Bmn cos(mθ) +Dmn sin(mθ))

= α(r) sin(3θ).

Orthogonality of the eigenfunctions in θ implies that Bmn = 0 for m = 0, 1, 2, ... and n = 1, 2, ...,
and Dmn = 0 for all m 6= 3 and n = 1, 2, ... The only nonzero coefficients are:

D3n =

∫ a
0 α(r)J3

(√
λ3nr

)
r dr

c
√
λ3n

∫ a
0 J

2
3

(√
λ3nr

)
r dr

.

With these Fourier coefficients, it follows that the solution satisfies:

u(r, θ, t) =
∞∑
n=1

D3nJ3

(√
λ3nr

)
sin(3θ) sin

(
c
√
λ3nt

)
.



7.7.2.a. (15 pts) Consider the circular membrane:

∂2u

∂t2
= c2∇2u = c2

(
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

)
,

with BC ∂u
∂r (a, θ, t) = 0 and ICs u(r, θ, 0) = 0 and ∂u

∂t (r, θ, 0) = β(r) cos(5θ). This begins just
like Problem 7.7.1. We apply separation of variables: u(r, θ, t) = φ(r)g(θ)h(t), which gives

φgh′′ = c2
(
gh

r

d

dr

(
r
dφ

dr

)
+
φh

r2
d2g

dθ2

)
,

which is equivalent to
h′′

c2h
=

(
1

rφ

d

dr

(
r
dφ

dr

)
+

1

r2g

d2g

dθ2

)
= −λ.

This leads to the t-equation: h′′ + λc2h = 0, which has the solution:

h(t) =

{
c1t+ c2, λ = 0,

c1 cos(c
√
λt) + c2 sin(c

√
λt), λ > 0.

A second separation of variables gives two Sturm-Liouville problems:

r

φ

d

dr

(
r
dφ

dr

)
+ r2λ = −g

′′

g
= µ.

The first Sturm-Liouville problem is:

g′′ + µg = 0, with g(−π) = g(π) and g ′(−π) = g ′(π).

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved
before. This has eigenvalue µ0 = 0 with eigenfunction g0(θ) = 1 and eigenvalues µm = m2 with
eigenfunctions gm(θ) = am cos(mθ) + bm sin(mθ).

The second Sturm-Liouville problem is:

r
d

dr

(
r
dφ

dr

)
+ r2
√
λφ−m2φ = 0,

which is Bessel’s equation of order m. This has the general solution:

φ(r) =

{
d1 + d2 ln(r), λ = 0 and m = 0,

d1Jm(
√
λr) + d2Ym(

√
λr), λ > 0 and m = 0, 1, 2, ...

The boundedness condition at the origin requires d2 = 0, so

φ ′(r) =

{
0, λ = 0 and m = 0,

d1
√
λJ ′m(

√
λr), λ > 0 and m = 0, 1, 2, ...

The BVP requires φ ′(a) = 0, so one eigenfunction is

φ00(r) = 1, with λ = 0 and m = 0.

The other eigenfunctions, where λ > 0 and m = 0, 1, 2, ..., are

φmn(r) = Jm

(√
λmnr

)
,



where J ′m
(√
λmna

)
= 0 with λmn =

(
zmn
a

)2
with zmn being the nth zero of the derivative of

mth order Bessel function (J ′m(zmn) = 0).

The Superposition principle gives:

u(r, θ, t) = A1t+A0 +
∞∑
n=1

J0

(√
λ0nr

)(
B0n cos

(
c
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λ0nt

)
+ C0n sin

(
c
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+
∞∑
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∞∑
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)(
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(
c
√
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)
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(
c
√
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+
∞∑
m=1

∞∑
n=1

sin(mθ)Jm

(√
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)(
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(
c
√
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)
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(
c
√
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.

The initial displacement is zero (u(r, θ, 0) = 0), which gives A0 = 0, Bmn = 0 for m = 0, 1, 2...
and n = 1, 2, ... and Dmn = 0 for m = 1, 2... and n = 1, 2, .... This reduces our solution to

u(r, θ, t) = A1t+

∞∑
n=1

C0nJ0

(√
λ0nr

)
sin
(
c
√
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)
+
∞∑
m=1

∞∑
n=1

Jm

(√
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)
(Cmn cos(mθ) + Emn sin(mθ)) sin

(
c
√
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)
.

The initial velocity gives ∂u
∂t (r, θ, 0) = β(r) cos(5θ). From the solution above we have

∂u

∂t
(r, θ, t) = A1 +

∞∑
n=1

c
√
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(√
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)
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(
c
√
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)
+

∞∑
m=1

∞∑
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(√
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)
(Cmn cos(mθ) + Emn sin(mθ)) cos

(
c
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)
,

which when evaluated at t = 0 gives:

∂u

∂t
(r, θ, 0) = A1 +

∞∑
n=1

c
√
λ0nC0nJ0

(√
λ0nr

)
+

∞∑
m=1

∞∑
n=1

c
√
λmnJm

(√
λmnr

)
(Cmn cos(mθ) + Emn sin(mθ))

= β(r) cos(5θ).

Orthogonality of the eigenfunctions in θ implies that A1 = 0, Cmn = 0 form 6= 5 and n = 1, 2, ...,
and Emn = 0 for m = 1, 2, ... and n = 1, 2, ... The only nonzero coefficients are:

C5n =

∫ a
0 β(r)J5

(√
λ5nr

)
r dr

c
√
λ5n

∫ a
0 J

2
5

(√
λ5nr

)
r dr

.

With these Fourier coefficients, it follows that the solution satisfies:

u(r, θ, t) =
∞∑
n=1

C5nJ5

(√
λ5nr

)
cos(5θ) sin

(
c
√
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)
.



7.9.1.c. (15 pts) Consider Laplace’s equation on a cylinder:

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2
= 0,

with BCs u(r, θ, 0) = 0, u(r, θ,H) = β(r) cos(3θ), and ∂u
∂r (a, θ, z) = 0 (insulated). There are

implicit BCs u(r,−π, z) = u(r, π, z), uθ(r,−π, z) = uθ(r, π, z), and u(0, θ, z) bounded. We
apply separation of variables u(r, θ, z) = φ(r)g(θ)h(z), giving:

gh

r

d

dr

(
r
dφ

dr

)
+
φhg ′′

r2
+ φgh ′′ = 0, or

1

rφ

d

dr

(
r
dφ

dr

)
+
g ′′

r2g
= −h

′′

h
= −λ.

This gives the z equation: h ′′ − λh = 0, which has the solution:

h(z) =

{
c1z + c2, λ = 0,

c1 cosh(
√
λz) + c2 sinh(

√
λz), λ > 0.

A second separation gives two Sturm-Liouville problems:

r

φ

d

dr

(
r
dφ

dr

)
+ λr2 = −g

′′

g
= µ.

The first Sturm-Liouville problem is:

g ′′ + µg = 0, with g(−π) = g(π) and g ′(−π) = g ′(π).

This is a standard eigenvalue problem with periodic boundary conditions, which we have solved
before. This has eigenvalue µ0 = 0 with eigenfunction g0(θ) = 1 and eigenvalues µm = m2 with
eigenfunctions gm(θ) = am cos(mθ) + bm sin(mθ).

The second Sturm-Liouville problem is:

r
d

dr

(
r
dφ

dr

)
+ r2
√
λφ−m2φ = 0,

which is Bessel’s equation of order m. This has the general solution:

φ(r) =

{
d1 + d2 ln(r), λ = 0 and m = 0,

d1Jm(
√
λr) + d2Ym(

√
λr), λ > 0 and m = 0, 1, 2, ...

The boundedness condition at the origin requires d2 = 0, so

φ ′(r) =

{
0, λ = 0 and m = 0,

d1
√
λJ ′m(

√
λr), λ > 0 and m = 0, 1, 2, ...

The BVP requires φ ′(a) = 0, so one eigenfunction is

φ00(r) = 1, with λ = 0 and m = 0.

The other eigenfunctions, where λ > 0 and m = 0, 1, 2, ..., are

φmn(r) = Jm

(√
λmnr

)
,



where J ′m
(√
λmna

)
= 0 with λmn =

(
zmn
a

)2
with zmn being the nth zero of the derivative of

mth order Bessel function (J ′m(zmn) = 0).

The Superposition principle gives:

u(r, θ, z) = A1z +A0 +
∞∑
n=1

J0

(√
λ0nr

)(
B0n cosh

(√
λ0nz

)
+ C0n sinh

(√
λ0nz

))
+

∞∑
m=1

∞∑
n=1

cos(mθ)Jm

(√
λmnr

)(
Bmn cosh

(√
λmnz

)
+ Cmn sinh

(√
λmnz

))
+
∞∑
m=1

∞∑
n=1

sin(mθ)Jm

(√
λmnr

)(
Dmn cosh

(√
λmnz

)
+ Emn sinh

(√
λmnz

))
.

The homogeneous BC on the bottom of the cylinder, u(r, θ, 0) = 0, gives A0 = 0, Bmn = 0 for
m = 0, 1, 2... and n = 1, 2, ... and Dmn = 0 for m = 1, 2... and n = 1, 2, .... This reduces our
solution to

u(r, θ, z) = A1z +
∞∑
n=1

C0nJ0

(√
λ0nr

)
sinh

(√
λ0nz

)
+

∞∑
m=1

∞∑
n=1

Jm

(√
λmnr

)
(Cmn cos(mθ) + Emn sin(mθ)) sinh

(√
λmnz

)
.

The BC at the top of the cylinder gives u(r, θ,H) = β(r) cos(3θ). From the solution above we
have

u(r, θ,H) = A1H +
∞∑
n=1

C0nJ0

(√
λ0nr

)
sinh

(√
λ0nH

)
+

∞∑
m=1

∞∑
n=1

Jm

(√
λmnr

)
(Cmn cos(mθ) + Emn sin(mθ)) sinh

(√
λmnH

)
= β(r) cos(3θ).

Orthogonality of the eigenfunctions in θ implies that A1 = 0, Cmn = 0 form 6= 3 and n = 1, 2, ...,
and Emn = 0 for m = 1, 2, ... and n = 1, 2, ... The only nonzero coefficients are:

C3n =

∫ a
0 β(r)J3

(√
λ3nr

)
r dr

sinh
(√
λ3nH

) ∫ a
0 J

2
3

(√
λ3nr

)
r dr

.

With these Fourier coefficients, it follows that the solution satisfies:

u(r, θ, z) =

∞∑
n=1

C3nJ3

(√
λ3nr

)
cos(3θ) sinh

(√
λ3mnH

)
.



7.9.2.b. (15 pts) Consider the semi-circular cylinder:

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2
= 0,

with BCs u(r, θ, 0) = 0, ∂u
∂z (r, θ,H) = 0, u(r, 0, z) = 0, u(r, π, z) = 0, and u(a, θ, z) = β(θ, z).

There is an implicit BC that u(0, θ, z) is bounded. We apply separation of variables u(r, θ, z) =
φ(r)g(θ)h(z), giving:

gh

r

d

dr

(
r
dφ

dr

)
+
φhg ′′

r2
+ φgh ′′ = 0 or

1

rφ

d

dr

(
r
dφ

dr

)
+
g ′′

r2g
= −h

′′

h
= λ.

This gives the first Sturm-Liouville problem:

h ′′ + λh = 0, with h(0) = 0 and h ′(H) = 0.

We have shown that λ ≤ 0 leads only to trivial solutions. The solution is:

h(z) = c1 cos(
√
λz) + c2 sin(

√
λz),

The BC h(0) = 0 implies c1 = 0. The BC h ′(H) = c2
√
λ cos(

√
λH) = 0, which for nontrivial

solutions gives:

√
λ =

(2n− 1)π

2H
or λn =

(2n− 1)2π2

4H2
, n = 1, 2, ... with e.f. h(t) = sin

(
(2n−1)πz

2H

)
.

A second separation gives one Sturm-Liouville problem and a modified Bessel’s equation:

r

φ

d

dr

(
r
dφ

dr

)
− λr2 = −g

′′

g
= µ.

The second Sturm-Liouville problem is:

g ′′ + µg = 0, with g(0) = 0 and g(π) = 0.

This is a standard Dirichlet eigenvalue problem, which we have solved before. This has eigen-
values µm = m2 with eigenfunctions gm(θ) = sin(mθ) for m = 1, 2, ...

The modified Bessel’s equation is:

d

dr

(
r
dθ

dr

)
+

(
−(2n− 1)2 π2

4H2
r − m2

r

)
φ = 0,

which has the general solution:

φ(r) = c1Im

(
(2n− 1)πr

2H

)
+ c2Km

(
(2n− 1)πr

2H

)
.

The boundedness condition implies c2 = 0.

The Superposition principle gives:

u(r, θ, z) =

∞∑
m=1

∞∑
n=1

Amn sin(mθ) sin

(
(2n− 1)πz

2H

)
Im

(
(2n− 1)πr

2H

)
.



The nonhomogeneous BC satisfies:

u(r, θ, a) =
∞∑
m=1

∞∑
n=1

Amn sin(mθ) sin

(
(2n− 1)πz

2H

)
Im

(
(2n− 1)πa

2H

)
= β(θ, z).

Using the orthogonality of the eigenfunctions, we obtain the Fourier coefficients:

Amn =
4
∫ π
0

∫ H
0 β(θ, z) sin(mθ) sin

(
(2n−1)πz

2H

)
dz dθ

πHIm

(
(2n−1)πa

2H

) .


