
Spring Homework 7 Math 531

7.3.1.d. (15pts) Consider the heat equation in a 2-dimensional rectangular region

∂u

∂t
= k

(
∂2u

∂x2
+
∂2u

∂y2

)
, 0 < x < L, 0 < y < H,

with IC: u(x, y, 0) = f(x, y) and BCs:

u(0, y, t) = 0,
∂u

∂x
(L, y, t) = 0,

∂u

∂y
(x, 0, t) = 0,

∂u

∂y
(x,H, t) = 0.

With separation of variables, take u(x, y, t) = φ(x)g(y)h(t), then

h ′φg = k(φ ′′gh+ g ′′φh), so
h ′

kh
=
φ ′′

φ
+
g ′′

g
= −λ.

The differential equation in t is:

h ′ = −λkh, so h(t) = ce−kλt.

A second separation of variables gives:

φ ′′

φ
= −g

′′

g
− λ = −µ.

The first SL-problem is:

φ ′′ + µφ = 0, with φ(0) = 0, φ ′(L) = 0.

If µ = −α2 < 0, then φ(x) = c1 cosh(αx) + c2 sinh(αx). The BCs give φ(0) = c1 = 0 and
φ ′(L) = c2α cosh(αL) = 0, so c2 = 0, yielding only the trivial solution.
If µ = 0, then φ(x) = c1x+ c2. The BCs give φ(0) = c2 = 0 and φ ′(L) = c1 = 0, yielding only
the trivial solution.
If µ = α2 > 0, then φ(x) = c1 cos(αx) + c2 sin(αx). The BCs give φ(0) = c1 = 0 and

φ ′(L) = c2α cos(αL) = 0. For non-trivial solutions, αm = (2m−1)π
2L , which gives eigenvalues and

eigenfunctions:

µm =
(2m− 1)2π2

4L2
and φm(x) = sin

(
(2m− 1)πx

2L

)
, m = 1, 2, 3...

The second SL-problem is g ′′ = (−λ + µm)g = −νg with g ′(0) = 0 and g ′(H) = 0. This is a
standard Neumann BC problem, which has eigenvalues and eigenfunctions:

ν0 = 0 and g0(y) = 1,

νn =
n2π2

H2
and gn(y) = cos

(nπy
H

)
, n = 1, 2, 3...

We already showed that ν < 0 gives only trivial solutions. It follows that

λmn = µm + νn =
(2m− 1)2π2

4L2
+
n2π2

H2
, m = 1, 2, ..., n = 0, 1, 2, ...



Superposition principle gives:

u(x, y, t) =
∞∑
m=1

Am0 sin

(
(2m− 1)πx

2L

)
e−k

(2m−1)2π2

4L2 t

+
∞∑
n=1

∞∑
m=1

Amn sin

(
(2m− 1)πx

2L

)
cos
(nπy
H

)
e
−k

(
(2m−1)2π2

4L2 +n2π2

H2

)
t

The initial condition gives:

u(x, y, 0) = f(x, y) =

∞∑
m=1

Am0 sin

(
(2m− 1)πx

2L

)
+

∞∑
n=1

∞∑
m=1

Amn sin

(
(2n− 1)πx

2L

)
cos
(nπy
H

)
.

Using orthogonality, we obtain the Fourier coefficients:

Am0 =

∫ H
0

∫ L
0 f(x, y) sin

(
(2m−1)πx

2L

)
dx dy∫ H

0

∫ L
0 sin2

(
(2m−1)πx

2L

)
dx dy

=
2

HL

∫ H

0

∫ L

0
f(x, y) sin

(
(2m− 1)πx

2L

)
dx dy for m = 1, 2, 3...

Amn =

∫ H
0

∫ L
0 f(x, y) sin

(
(2m−1)πx

2L

)
cos
(nπy
H

)
dx dy∫ H

0

∫ L
0 sin2

(
(2m−1)πx

2L

)
cos2

(mπy
H

)
dx dy

=
4

HL

∫ H

0

∫ L

0
f(x, y) sin

(
(2m− 1)πx

2L

)
cos
(nπy
H

)
dx dy for n = 1, 2, 3...,m = 1, 2, 3

Since

lim
t→∞

e−k
(2m−1)2π2

4L2 t = 0 and lim
t→∞

e
−k

(
(2m−1)2π2

4L2 +n2π2

H2

)
t

= 0,

it follows that:
lim
t→∞

u(x, y, t) = 0.

7.3.2.a. (20pts) Consider the heat equation in a 3-dimensional box-shaped region, 0 < x < L,
0 < y < H, and 0 < z < W :

∂u

∂t
= k

(
∂2u

d∂2
+
∂2u

∂y2
+
∂2u

∂z2

)
,

with IC u(x, y, z, 0) = f(x, y, z) and BCs:

u(0, y, z, t) = 0, u(L, y, z, t) = 0, ∂u
∂y (x, 0, z, t) = 0,

∂u
∂y (x,H, z, t) = 0, ∂u

∂z (x, y, 0, t) = 0, u(x, y,W, t) = 0.

Assuming k is a constant, separation of variables gives u(x, y, z, t) = φ(x)g(y)s(z)h(t), so

h ′φgs = k(φ ′′gsh+ g ′′shφ+ s ′′hφg), or
h ′

kh
=
φ ′′

φ
+
g ′′

g
+
s ′′

s
= −λ.



The differential equation in t is:

h ′ = −λkh, so h(t) = ce−kλt.

A second separation of variables gives:

φ ′′

φ
= −g

′′

g
− s ′′

s
− λ = −µ.

The first SL-problem is:

φ ′′ + µφ = 0, with φ(0) = 0, φ(L) = 0.

This is a standard SL-problem with Dirichlet BC problem, which has eigenvalues and eigen-
functions:

µm =
m2π2

L2
and φm(x) = sin

(mπx
L

)
, m = 1, 2, 3...

We already showed that µ ≤ 0 gives only trivial solutions.

A third separation of variables gives:

g ′′

g
= −s

′′

s
− λ+ µ = −ν.

The second SL-problem is g ′′ + νg = 0 with g ′(0) = 0 and g ′(H) = 0. This is a standard
Neumann BC problem, which has eigenvalues and eigenfunctions:

ν0 = 0 and g0(y) = 1,

νn =
n2π2

H2
and gn(y) = cos

(nπy
H

)
, n = 1, 2, 3...

We already showed that ν < 0 gives only trivial solutions.

The remaining ODE is:
s ′′

s
= ν + µ− λ = −γ.

The third SL-problem is s ′′ + γs = 0 with s ′(0) = 0 and s(W ) = 0. If γ = −α2 < 0, then
s(z) = c1 cosh(αz) + c2 sinh(αz). The BCs give s ′(0) = αc2 = 0 or c2 = 0 and s(W ) =
c1 cosh(αW ) = 0, so c1 = 0, yielding only the trivial solution.
If γ = 0, then s(z) = c1z + c2. The BCs give s ′(0) = c1 = 0 and s(W ) = c2 = 0, yielding only
the trivial solution.
If γ = α2 > 0, then s(z) = c1 cos(αz) + c2 sin(αz). The BCs give s ′(0) = c2α = 0 or c2 = 0 and

s(W ) = c1 cos(αW ) = 0. For non-trivial solutions, αp = (2p−1)π
2W , which gives eigenvalues and

eigenfunctions:

γp =
(2p− 1)2π2

4W 2
and sp(z) = cos

(
(2p− 1)πz

2W

)
, p = 1, 2, 3...

Combining these results gives:

λmnp = µm + νn + γp =
m2π2

L2
+
n2π2

H2
+

(2p− 1)2π2

4W 2
.



By the superposition principle:

u(x, y, z, t) =
∞∑
m=1

∞∑
p=1

Am0p sin
(mπx

L

)
cos

(
(2p− 1)πz

2W

)
e
−k

(
m2π2

L2 +
(2p−1)2π2

4W2

)
t

+
∞∑
m=1

∞∑
n=1

∞∑
p=1

Amnp sin
(mπx

L

)
cos
(nπy
H

)
cos

(
(2p− 1)πz

2W

)
e
−k

(
m2π2

L2 +n2π2

H2 +
(2p−1)2π2

4W2

)
t
,

The initial condition gives:

u(x, y, z, 0) = f(x, y, z) =

∞∑
m=1

∞∑
p=1

Am0p sin
(mπx

L

)
cos

(
(2p− 1)πz

2W

)

+

∞∑
m=1

∞∑
n=1

∞∑
p=1

Amnp sin
(mπx

L

)
cos
(nπy
H

)
cos

(
(2p− 1)πz

2W

)
By using orthogonality we obtain the Fourier coefficients:

Am0p =

∫W
0

∫ H
0

∫ L
0 f(x, y, z) sin

(
mπx
L

)
cos
(
(2p−1)πz

2W

)
dx dy dz∫W

0

∫ H
0

∫ L
0 sin2

(
mπx
L

)
cos2

(
(2p−1)πz

2W

)
dx dy dz

=
4

LHW

∫ W

0

∫ H

0

∫ L

0
f(x, y, z) sin

(mπx
L

)
cos

(
(2p− 1)πz

2W

)
dx dy dz

for m = 1, 2, 3... p = 1, 2, 3...

Amnp =

∫W
0

∫ H
0

∫ L
0 f(x, y, z) sin

(
mπx
L

)
cos
(nπy
H

)
cos
(
(2p−1)πz

2W

)
dx dy dz∫W

0

∫ H
0

∫ L
0 sin2

(
mπx
L

)
cos2

(nπy
H

)
cos2

(
(2p−1)πz

2W

)
dx dy dz

=
8

LHW

∫ W

0

∫ H

0

∫ L

0
f(x, y, z) sin

(mπx
L

)
cos
(nπy
H

)
cos

(
(2p− 1)πz

2W

)
dx dy dz

for m = 1, 2, 3..., n = 1, 2, 3, ... p = 1, 2, 3...

Since

lim
t→∞

e
−k

(
m2π2

L2 +
(2p−1)2π2

4W2

)
t

= 0 and lim
t→∞

e
−k

(
m2π2

L2 +n2π2

H2 +
(2p−1)2π2

4W2

)
t

= 0,

it follows that:
lim
t→∞

u(x, y, z, t) = 0.

7.3.4.a. (15pts) Consider the wave equation for a vibrating rectangular membrane 0 < x < L
and 0 < y < H:

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
,

with ICs u(x, y, 0) = 0 and ∂u
∂t (x, y, 0) = f(x, y). The BCs are given by:

u(0, y, t) = 0, u(L, y, t) = 0,
∂u

∂y
(x, 0, t) = 0,

∂u

∂y
(x,H, t) = 0.



With separation of variables and assuming c2 is a constant, we take u(x, y, t) = φ(x)g(y)h(t),
so

h ′′φg = c2(φ ′′gh+ g ′′φh), or
h ′′

c2h
=
φ ′′

φ
+
g ′′

g
= −λ.

The differential equation in t is h ′′ + c2λh = 0, which has the solution:

h(t) = c1 cos
(
c
√
λt
)

+ c2 sin
(
c
√
λt
)
,

provided λ > 0.

A second separation of variables gives:

φ ′′

φ
= −λ− g ′′

g
= −µ.

This gives the first SL-problem:

φ ′′ + µφ = 0, with φ(0) = 0 and φ(L) = 0.

This is a standard SL-problem with Dirichlet BC problem, which has eigenvalues and eigen-
functions:

µm =
m2π2

L2
and φm(x) = sin

(mπx
L

)
, m = 1, 2, 3...

We already showed that µ ≤ 0 gives only trivial solutions.

From above we have:

−g
′′

g
− λ = −µm or g ′′ + (λ− µm)g = g ′′ + νg = 0.

The second SL-problem is g ′′ + νg = 0 with g ′(0) = 0 and g ′(H) = 0. This is a standard
Neumann BC problem, which has eigenvalues and eigenfunctions:

ν0 = 0 and g0(y) = 1,

νn =
n2π2

H2
and gn(y) = cos

(nπy
H

)
, n = 1, 2, 3...

We already showed that ν < 0 gives only trivial solutions.

Combining our results, we have:

λmn = µm + νn =
m2π2

L2
+
n2π2

H2
.

The solution to the differential equation in time becomes:

h(t) = Amn cos
(
c
√
λmnt

)
+Bmn sin

(
c
√
λmnt

)
,

which with the initial displacement being zero gives Amn = 0.

The Superposition principle gives the solution:

u(x, y, t) =
∞∑
m=1

Bm0 sin
(mπx

L

)
sin

(
c

√
m2π2

L2
t

)

+
∞∑
m=1

∞∑
n=1

Bmn sin
(mπx

L

)
cos
(nπy
H

)
sin

(
c

√
m2π2

L2
+
n2π2

H2
t

)
.



The initial velocity gives:

du(x, y, 0)

dt
= f(x, y) =

∞∑
m=1

c

√
m2π2

L2
Bm0 sin

(mπx
L

)
+
∞∑
m=1

∞∑
n=1

c

√
m2π2

L2
+
n2π2

H2
Bnm sin

(mπx
L

)
cos
(nπy
H

)
From orthogonality, the Fourier coefficients become:

Bm0 =
L
∫ H
0

∫ L
0 f(x, y) sin

(
nπx
L

)
dx dy

cmπ
∫ H
0

∫ L
0 sin2

(
nπx
L

)
dx dy

=
2

cmπH

∫ H

0

∫ L

0
f(x, y) sin

(nπx
L

)
dx dy,

for m = 1, 2, 3... and

Bmn =

∫ H
0

∫ L
0 f(x, y) sin

(
mπx
L

)
cos
(nπy
H

)
dx dy

c
√

m2π2

L2 + n2π2

H2

∫ H
0

∫ L
0 sin2

(
mπx
L

)
cos2

(nπy
H

)
dx dy

=
4

LHc
√

m2π2

L2 + n2π2

H2

∫ H

0

∫ L

0
f(x, y) sin

(mπx
L

)
cos
(nπy
H

)
dx dy,

for m = 1, 2, 3... and m = 1, 2, 3...

7.3.5. (8pts) a. Below is a PDE describing a vibrating membrane:

∂u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
− k∂u

∂t
, k > 0.

The term on the left is the acceleration of the membrane. The first term on the right describes
the tension on the membrane, while the second term on the right is viscous damping, such as
air resistance on the membrane.

b. Assume c2 is constant and suppose that u(x, y, t) = f(x)g(y)h(t). We can apply the separa-
tion of variables method to obtain:

h ′′fg = c2(f ′′gh+ g ′′fh)− kh ′fg or
h ′′ + kh ′

c2h
=
f ′′

f
+
g ′′

g
= −λ.

This shows there is the ODE in t given by:

h ′′ + kh ′ + λc2h = 0.

A second separation of variables gives:

f ′′

f
= −λ− g ′′

g
= −µ,

which gives the second ODE in x:
f ′′ + µf = 0.



Finally, we have
g ′′

g
= µ− λ = −ν,

which gives the third ODE in y:
g ′′ + νg = 0,

where λ = µ+ ν.

7.5.1.a. (5pts) The vertical displacement of a non-uniform membrane satisfies

∂u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
.

where c depends on x and y. Suppose that u = 0 on the boundary of an irregularly shaped
membrane. Assume we can separate variables with

u(x, y, t) = φ(x, y)h(t).

It follows that:

h ′′φ(x, y) = c2∇2φ(x, y)h or
h ′′

h
=
c2∇2φ(x, y)

φ(x, y)
= −λ.

This leaves the time ODE:
h ′′ + λh = 0,

and the space ODE in (x, y):

∇2φ+
λ

c2
φ = 0,

where φ(x, y) = 0 on the boundary. This last problem is our eigenvalue problem. From the
form of the problem it is easy to see that the weighting function is:

σ(x, y) =
1

c2(x, y)
.

7.5.2.a. (7pts) From the previous exercise, we are considering the eigenvalue problem:

∇2φ+
λ

c2
φ = 0,

with φ(x, y) = 0 on the boundary. We want to prove that distinct eigenfunctions are orthogonal.
Consider two eigenfunctions φm(x, y) and φn(x, y) with distinct eigenvalues λm and λn. Green’s
theorem gives:∫∫

R

[
φm∇2φn − φn∇2φm

]
dx dy =

∮
∂R

[φm∇φn − φn∇φm] · n ds = 0,

where the line integral is zero because the eigenfunctions are zero on the boundary of the region.
Since

∇2φm = −λm
c2
φm and ∇2φn = −λn

c2
φn,



we can write∫∫
R

[
φm∇2φn − φn∇2φm

]
dx dy = −

∫∫
R

[
φmφn

λn
c2
− φmφn

λm
c2

]
dx dy = 0.

It follows that

(λm − λn)

∫∫
R

[
φmφn
c2

]
dx dy = 0.

Since the eigenvalues are distinct λm − λn 6= 0, we have the orthogonality:∫∫
R
φmφnσ(x, y) dx dy = 0,

where

σ(x, y) =
1

c2(x, y)
.


