
Spring Homework 6 Math 531

5.5.1. (10pts) A Sturm-Liouville problem is self-adjoint when∫ b

a
[uL(v)− vL(u)]dx = 0,

which occurs when

p

(
u
dv

dx
− vdu

dx

)∣∣∣∣b
a

= 0.

c. If φ′(0) − hφ(0) = 0 and φ′(L) = 0, then we have u′(0) = hu(0), u′(L) = 0, v′(0) = hv(0),
and v′(L) = 0. Substituting the B.C.s into the conditions above, we have

p(L)
[
u(L)v′(L)− v(L)u′(L)

]
− p(0)

[
u(0)v′(0)− v(0)u′(0)

]
= p(L) [u(L) · 0− v(L) · 0]− p(0) [u(0)hv(0)− v(0)hu(0)] = 0.

Thus, these B.C.s give the operator L being self-adjoint.

d. If φ(a) = φ(b) and p(a)φ′(a) = p(b)φ′(b), then we have u(a) = u(b), p(a)u′(a) = p(b)u′(b),
v(a) = v(b), and p(a)v′(a) = p(b)v′(b). Substituting the B.C.s into the conditions above, we
have

p(b)
[
u(b)v′(b)− v(b)u′(b)

]
− p(a)

[
u(a)v′(a)− v(a)u′(a)

]
= u(b)[p(b)v′(b)]− v(b)[p(b)u′(b)]− u(a)[p(a)v′(a)] + v(a)[p(a)u′(a)],

= u(a)[p(a)v′(a)]− v(a)[p(a)u′(a)]− u(a)[p(a)v′(a)] + v(a)[p(a)u′(a)],

= 0.

Thus, these B.C.s give the operator L being self-adjoint.

5.5.5. (10pts) Consider the operator L = d2

dx2
+ 6 d

dx + 9.

a. Apply the operator to erx, then we have

L(erx) =
d2

dx2
(erx) + 6

d

dx
(erx) + 9(erx),

= r2erx + 6rerx + 9erx = (r2 + 6r + 9)erx = (r + 3)2erx.

b. If L(y) = 0 is a second order DE, then for y = erx we have L(y) = (r + 3)2y = 0 (Part a).
For nontrivial solutions, r = −3, and y = e−3x is a solution.

c. Consider z(x, r), then L(z) = d2z
dx2

+ 6 dzdx + 9z, so

∂

∂r
[L(z)] =

∂

∂r

(
d2z

dx2

)
+ 6

∂

∂r

(
dz

dx

)
+ 9

∂z

∂r
,

= zxxr + 6zxr + 9zr,

L(zr) =
d2zr
dx2

+ 6
dzr
dx

+ 9zr,

= zrxx + 6zrx + 9zr.

Assuming that all the partial derivatives are continuous, we have zrxx = zxxr and zrx = zxr, so

∂

∂r
L(z) = L

(
∂z

∂r

)
.



d. Let z = erx, then ∂z
∂r = xerx. From Part c, we have

L (xerx) =
∂

∂r
[L (erx)] =

∂

∂r

[
(r + 3)2erx

]
.

It follows that

L (xerx) = 2(r + 3)erx + x(r + 3)2erx = erx(r + 3) [2 + x(r + 3)] .

e. From Part d, we have L (xerx) = erx(r + 3) [2 + x(r + 3)]. From this expression it is clear
that for all x, if r = −3, we have

L
(
xe−3x

)
= 0,

so y(x) = xe−3x is another solution to our linear operator L.

5.5.8. (15pts) Consider the 4th order linear operator (often in beam problems)

L =
d4

dx4
.

a. We expand this operator

uL(v)− vL(u) = u · v(4) − v · u(4),
= uv(4) + u′v(3) − u′v(3) − u′′v′′ + u′′v′′ + u(3)v′ − u(3)v′ − u(4)v,

=
(
uv(3)

)′
−
(
u′v′′

)′
+
(
u′′v′

)′ − (u(3)v)′ = [uv(3) − u′v′′ + u′′v′ − u(3)v
]′
,

=
d

dx

[
uv(3) − u′v′′ + u′′v′ − u(3)v

]
,

which is an exact differential.

b. We use the Fundamental Theorem of Calculus to integrate and evaluate this exact differential:∫ 1

0
[uL(v)− vL(u)] dx =

∫ 1

0

[
d

dx
(uv(3) − u′v′′ + u′′v′ − u(3)v)

]
dx,

= (uv(3) − u′v′′ + u′′v′ − u(3)v)
∣∣∣1
0
.

Thus, we have∫ 1

0
[uL(v)− vL(u)] dx = u(1)v(3)(1)− u′(1)v′′(1) + u′′(1)v′(1)− u(3)(1)v(1)

−u(0)v(3)(0) + u′(0)v′′(0)− u′′(0)v′(0) + u(3)(0)v(0).

c. If u and v are any two functions satisfying the B.C.’s, we have

u(0) = 0, u′(0) = 0, u(1) = 0, u′′(1) = 0,

v(0) = 0, v′(0) = 0, v(1) = 0, v′′(1) = 0.



the expression in Part b becomes:∫ 1

0
[uL(v)− vL(u)] dx = 0 · v(3)(1)− u′(1) · 0 + 0 · v′(1)− u(3)(1) · 0

−0 · v(3)(0) + 0 · v′′(0)− u′′(0) · 0 + u(3)(0) · 0 = 0.

Thus, we have that L is self-adjoint with∫ 1

0
[uL(v)− vL(u)] dx = 0.

d. Very clearly there are many other B.C.’s that result in this operator being self-adjoint. The
most common are “pinned” B.C.’s, where φ(0) = 0 or φ(1) = 0, or “clamped” B.C.’s, where
φ′(0) = 0 or φ′(1) = 0, or “free pivot (no force)” B.C.’s, where φ′′(0) = 0 or φ′′(1) = 0.
Obviously, four appropriate conditions must be satisfied for L to be self-adjoint.

e. Let λn be eigenvalues with corresponding eigenfunctions φn and assume the B.C.’s of Part c
for the eigenvalue problem:

d4φ

dx4
+ λexφ = 0.

Let λn 6= λm have associated eigenfunctions φn and φm. From the B.C.’s, we have:∫ 1

0
[φn · L(φm)− φm · L(φn)] dx = 0,

or

∫ 1

0

[
φn · φ(4)m − φm · φ(4)n

]
dx = 0.

However, since d4φ
dx4

= −λexφ, it follows that∫ 1

0
[φn(−λmexφm)− φm(−λnexφn)] dx = 0,

(λn − λm)

∫ 1

0
φmφne

x dx = 0.

Since λm and λn are distinct eigenvalues,
∫ 1
0 φmφne

x dx = 0, which shows that the eigenfunc-
tions, φi are orthogonal with respect to the weighting function σ(x) = ex.

5.5.11. (15pts) Consider the linear operator L = p(x) d2

dx2
+ r(x) d

dx + q(x), we examine:∫ b

a
v · L(u) dx =

∫ b

a
(vpu′′ + vru′ + vqu) dx =

∫ b

a
u′′vp dx+

∫ b

a
u′vr dx+

∫ b

a
uvq dx.

Using integration by parts on the first integral gives:∫ b

a
u′′vp dx = u′vp

∣∣b
a
−
∫ b

a
u′(vp′ + v′p) dx,

= [u′vp− u(vp′ + v′p)]
∣∣b
a

+

∫ b

a
u(vp′′ + 2v′p′ + v′′p)dx.



Using integration by parts on the second integral gives:∫ b

a
u′vr dx = uvr|ba −

∫ b

a
u(vr′ + v′r) dx.

We combine these results to give:∫ b

a
v · L(u) dx =

∫ b

a
u

[
p
d2v

dx2
+

(
2
dp

dx
− r
)
dv

dx
+

(
d2p

dx2
− dr

dx
+ q

)
v

]
dx

−
(
p

(
u
dv

dx
− vdu

dx

)
+ uv

(
dp

dx
− r
)∣∣∣∣b

a

,

=

∫ b

a
uL∗(v) dx−

(
p

(
u
dv

dx
− vdu

dx

)
+ uv

(
dp

dx
− r
)∣∣∣∣b

a

,

=

∫ b

a
uL∗(v)dx− H(x)|ba ,

where

L∗ = p
d2

dx2
+

(
2
dp

dx
− r(x)

)
d

dx
+

(
d2p

dx2
− dr

dx
+ q(x)

)
and

H(x) = p

(
u
dv

dx
− vdu

dx

)
+ uv

(
dp

dx
− r
)

Thus, we can write: ∫ b

a
[uL∗(v)− vL(u)] dx = H(x)|ba .

From these expressions we find that the operator L is self-adjoint (L = L∗) if and only if

2
dp

dx
− r(x) = r(x) or

dp

dx
= r(x)

and H(b)−H(a) = 0. Since p ′ = r, the latter condition reduces to

p(b)
(
u(b)v ′(b)− v(b)u ′(b)

)
− p(a)

(
u(a)v ′(a)− v(a)u ′(a)

)
= 0.

b. Assume that the B.C.’s on u satisfy:

u(0) = 0 and
du

dx
(L) + u(L) = 0 or

du

dx
(L) = −u(L),

then for self-adjointness we need H(L)−H(0) = 0 (assuming p ′ = r). These conditions imply:

H(L)−H(0) = p(L)
(
u(L)v ′(L)− v(L)u ′(L)

)
− p(0)

(
u(0)v ′(0)− v(0)u ′(0)

)
= p(L)u(L)

(
v ′(L) + v(L)

)
− p(0)

(
v(0)u ′(0)

)
= 0.

This condition will hold if

v(0) = 0 and v′(L) + v(L) = 0.



5.8.5. a. (8pts) Consider the heat equation:

∂u

∂t
= k

∂2u

∂x2
,

with B.C.’s and I.C’s

∂u

∂x
(0, t) = 0 and

∂u

∂x
(L, t) = −hu(L, t), and u(x, 0) = f(x).

Start with separation of variables, u(x, t) = φ(x)g(t), so

φg ′ = kφ ′′g or
g ′

kg
=
φ ′′

φ
= −λ.

Let h > 0 and consider the SL problem:

φ ′′ + λφ = 0, with B.C.′s φ ′(0) = 0 and φ ′(L) + hφ(L) = 0.

If λ = −α2 < 0, then φ(x) = c1 cosh(αx) + c2 sinh(αx). If φ ′(0) = 0, then c2 = 0. For
φ ′(L) + hφ(L) = 0, then c1(α sinh(αL) + h cosh(αL)) = 0, which implies c1 = 0 (for h > 0)
and only the trivial solution exists. Similarly, if λ = 0, then φ(x) = c1x+ c2. With φ ′(0) = 0,
then c1 = 0. The B.C. φ ′(L) +hφ(L) = hc2 = 0 shows that c2 = 0, which again leaves only the
trivial solution.

If λ = α2 > 0, then φ(x) = c1 cos(αx) + c2 sin(αx). If φ ′(0) = 0, then c2 = 0. For φ ′(L) +
hφ(L) = 0, then c1(−α sin(αL)+h cos(αL)) = 0. This has nontrivial solutions when tan(αL) =
hL
αL . Thus, we have eigenfunctions:

φn(x) = cos
(√

λnx
)
,

where the eigenvalues λn solve the transcendental equation:

tan
(√

λL
)

=
hL√
λL

.
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)



The temporal equation is g ′ = −kλng, which has the solution, gn(t) = ane
−kλnt.

The superposition principle gives:

u(x, t) =

∞∑
n=1

ane
−kλnt cos

(√
λnx

)
.

Applying the I.C. yields:

u(x, 0) =
∞∑
n=1

an cos
√
λnx = f(x).

By the orthogonality of φ(x), we obtain the Fourier coefficients:

an =

∫ L
0 f(x)φn(x) dx∫ L

0 φ2n(x) dx
=

∫ L
0 f(x) cos

(√
λnx

)
dx∫ L

0 cos2
(√
λnx

)
dx

.

b. (12pts) If h < 0 (non-physical case), then similar to Part a, there are eigenfunctions:

φn(x) = cos
(√

λnx
)
,

where the eigenvalues λn solve the transcendental equation:

tan
(√

λL
)

=
hL√
λL

.
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If λ = −α2 < 0, then φ(x) = c1 cosh(αx) + c2 sinh(αx). If φ ′(0) = 0, then c2 = 0. For
φ ′(L)+hφ(L) = 0, then c1(α sinh(αL)+h cosh(αL)) = 0. If α sinh(αL)+h cosh(αL) = 0, then
tanh(αL) = − hL

αL . This equation has a unique solution, producing a negative eigenvalue. The
graph below shows a typical intersection from the equation above.



0 2 4 6 8 10
αL

0

0.5

1

1.5

y

y = tanh (αL)

y = −hL/ (αL)

Thus, we have one negative eigenvalue λ−1 with corresponding eigenfunction:

φ−1(x) = cosh
(√
−λ−1x

)
.

As before, the temporal problem has the solution:

g(t) = e−λnkt, n = −1, 1, 2, ...

Numerically, we find the first five eigenvalues, λ−1, λ1, λ2, λ3, and λ4. These eigenvalues are

λ−1 = −1.439229 λ1 = 7.830964 λ2 = 37.469707
λ3 = 86.822635 λ4 = 155.911544

We apply the superposition principle to obtain the solution:

u(x, t) = a−1e
−λ−1kt cosh

(√
−λ−1x

)
+
∞∑
n=1

ane
−λnkt cos

(√
λnx

)
.

The I.C. gives:

u(x, 0) = f(x) = a−1 cosh
(√
−λ−1x

)
+
∞∑
n=1

an cos
(√

λnx
)
.

From the orthogonality of the eigenfunctions, the Fourier coefficients satisfy:

an =

∫ L
0 f(x)φn(x) dx∫ L

0 φ2n(x) dx
=


∫ L
0 f(x) cosh

√
−λ−1x dx∫ L

0 cosh2
√
−λ−1x dx

, n = −1,∫ L
0 f(x) cos

√
λnx dx∫ L

0 cos2
√
λnx dx

, n ≥ 1.

5.8.8. a. (5pts) Consider the BVP:

φ ′′ + λφ = 0, with φ(0)− φ ′(0) = 0 and φ(1) + φ ′(1) = 0.

The Rayleigh quotient gives

λ =
−φdφdx

∣∣∣1
0

+
∫ 1
0

(
dφ
dx

)2
dx∫ 1

0 φ
2dx

.



However, since φ ′(1) = −φ(1) and φ ′(0) = φ(0), we see that

−φφ ′
∣∣1
0

= −φ(1)φ ′(1) + φ(0)φ ′(0) = φ2(1) + φ2(0),

so it follows that

λ =
φ2(1) + φ2(0) +

∫ 1
0 (φ ′)2dx∫ 1

0 φ
2dx

≥ 0.

If λ = 0, then the expression above implies that φ ′ = 0 or φ is constant. The B.C.’s show that
if φ is constant, then φ(x) ≡ 0, so is not an eigenfunction. Thus, it follows that λ > 0.

b. (5pts) Let L = d2

dx2
and φn and φm eigenfunctions with eigenvalues λn and λm for n 6= m. It

follows that
L[φn] + λnφn = 0 and L[φm] + λmφm = 0,

so ∫ 1

0
(φm(L[φn] + λnφn)− φn(L[φm] + λmφm)) dx = 0,

or ∫ 1

0
(φmL[φn]− φnL[φm] + (λn − λm)φnφm) dx = 0.

So integrating by parts gives[
φm

d

dx
φn − φn

d

dx
φm

∣∣∣∣1
0

+ (λn − λm)

∫ 1

0
φnφm dx = 0,

or

φm(1)φ ′n(1)− φn(1)φ ′m(1)− φm(0)φ ′n(0) + φn(0)φ ′m(0) + (λn − λm)

∫ 1

0
φnφm dx = 0.

Since the B.C.’s satisfy φ ′(1) = −φ(1) and φ ′(0) = φ(0), the expression above reduces to

(λn − λm)

∫ 1

0
φnφm dx = 0 or

∫ 1

0
φnφm dx = 0.

Therefore, φn and φm are orthogonal.

c. (9pts) We solve φ ′′ + λφ = 0 (with λ > 0). The general solution is

φ(x) = c1 cos
(√

λx
)

+ c2 sin
(√

λx
)
, so φ ′(x) = −c1

√
λ sin

(√
λx
)

+ c2
√
λ cos

(√
λx
)
.

The B.C. φ(0)− φ ′(0) = 0 gives c1 − c2
√
λ = 0 or c1 = c2

√
λ. The other B.C. φ(1) + φ ′(1) = 0

gives:

c2
√
λ cos

(√
λ
)

+ c2 sin
(√

λ
)
− c2λ sin

(√
λ
)

+ c2
√
λ cos

(√
λ
)

= 0.

Combining terms gives

c2

[
2
√
λ cos

(√
λ
)

+ (1− λ) sin
(√

λ
)]

= 0,

which for nontrivial solutions yields 2
√
λ cos

(√
λ
)

+ (1− λ) sin
(√

λ
)

= 0 or

tan
(√

λ
)

=
2
√
λ

λ− 1
.

Below is a graph of the right and left hand functions of
√
λ with intersections producing the

square root of eigenvalues.
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If f(
√
λ) = 2

√
λ

(λ−1) and g(
√
λ) = tan

√
λ are the right and left hand functions for the eigenvalue

equation, then f(x) = g(x) at x = 0, which is not an eigenvalue. All subsequent intersections
occur after the vertical asymptote at x = 1. We have 0 <

√
λ1 <

π
2 , π <

√
λ2 <

3π
2 , 2π <√

λ3 <
5π
2 ,... Furthermore, we readily see that lim√λ→∞f(

√
λ) = 0. It follows that

(n− 1)π <
√
λn <

(2n− 1)π

2
, n ≥ 1,

and for large n √
λn ' (n− 1)π.

d. (6pts) Consider the heat equation:

∂u

∂t
= k

∂2u

∂x2
, with I.C. u(x, 0) = f(x),

and B.C.’s u(0, t)−ux(0, t) = 0 and u(1, t)+ux(1, t) = 0. Separation of variables with u(x, t) =
φ(x)h(t) gives:

h′

kh
=
φ ′′

φ
= −λ.

This produces the SL problem:

φ ′′ + λφ = 0, with φ(0)− φ ′(0) = 0 and φ(1) + φ ′(1) = 0,

where λ satisfies the equation tan
(√

λ
)

= 2
√
λ

λ−1 . From Part c, we produced the eigenfunctions:

φn(x) =
√
λn cos

(√
λnx

)
+ sin

(√
λnx

)
,

which were orthogonal according to Part b.

The time-dependent problem is readily solved:

h ′ + λnkh = 0, so h(t) = ce−λnkt.

The superposition principle gives:

u(x, t) =

∞∑
n=1

ane
−kλntφn(x).



To satisfy the I.C. we need:

u(x, 0) =
∞∑
n=1

anφn(x) = f(x).

We multiply by φm(x) and integrate from 0 to 1. Using orthogonality, we obtain:

am

∫ 1

0
φ2m(x) dx =

∫ 1

0
f(x)φm(x) dx or am =

∫ 1
0 f(x)φm(x) dx∫ 1

0 φ
2
m(x) dx

.

5.8.11. (5pts) Consider the SL problem:

φ ′′ + 5φ = −λφ, with φ(0) = 0 and φ(π) = 0.

Let µ = λ+ 5, then we are solving the SL problem:

φ ′′ + µφ = 0 with φ(0) = 0 and φ(π) = 0.

We have seen before that this problem has eigenvalues, µn, and eigenfunctions φn(x) given by:

µn = n2 with φn(x) = sin(nx), n = 1, 2, 3, ...

However, λn = µn − 5 = n2 − 5, so the first eigenvalues are

λ1 = 1− 5 = −4,

λ2 = 4− 5 = −1,

λ3 = 9− 5 = 4,

λn > 0, for n ≥ 3.

The negative eigenvalues are λ1 = −4 and λ2 = −1.

WeBWorK 2. a. (5pts) Consider the SL problem (h > 0):

φ ′′ + λφ = 0, with φ ′(0) = 0 and
dφ

dx
(L) + hφ(L) = 0,

where p(x) = 1, q(x) = 0, and σ(x) = 1. The Rayleigh quotient satisfies:

λ =
−pφφ ′|L0 +

∫ L
0

(
p (φ ′)2 − qφ2

)
dx∫ L

0 φ2σ dx
.

We use the information on p, q, and σ with φ ′(L) = −hφ(L) (h > 0) to reduce the expression
above to

λ =
−φ(L)φ ′(L) +

∫ L
0 (φ ′)2 dx∫ L

0 φ2 dx
=
hφ2(L) +

∫ L
0 (φ ′)2 dx∫ L

0 φ2 dx
≥ 0.

If λ = 0, then φ ′ = 0, which implies φ(x) = C. However, φ ′(L) = 0 = −hφ(L) gives φ(x) ≡ 0,
which is not an eigenfunction. Thus, λ > 0.



c. (5pts) From Problem 5.8.5 above we find the eigenfunctions are:

φn(x) = cos
(√

λnx
)
,

where the eigenvalues λn solve the transcendental equation:

tan
(√

λL
)

=
hL√
λL

.

The graph above shows that each eigenvalue lies in an interval:√
λn ∈

(
(n− 1)π

L
,
(2n− 1)π

2L

)
with

√
λn →

nπ

L
, as n→∞.

Below we graph the eigenfunction:
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We see that the eigenfunction, φ1(x) has no zeros for x ∈ [0,
√
λ1L]. For the eigenfunction,

φ2(x) there is one zero for x ∈ [0,
√
λ2L]. Similarly, we see that the eigenfunction, φ3(x) there

are two zeros for x ∈ [0,
√
λ3L]. Asymptotically, we have

√
λn → nπ

L , and we know that
φn(x) ≈ cos

(
nπx
L

)
has n− 1 zeros for x ∈ [0, L], which was the desired result.


