5.5.1. (10pts) A Sturm-Liouville problem is self-adjoint when

$$
\int_{a}^{b}[u L(v)-v L(u)] d x=0
$$

which occurs when

$$
\left.p\left(u \frac{d v}{d x}-v \frac{d u}{d x}\right)\right|_{a} ^{b}=0
$$

c. If $\phi^{\prime}(0)-h \phi(0)=0$ and $\phi^{\prime}(L)=0$, then we have $u^{\prime}(0)=h u(0), u^{\prime}(L)=0, v^{\prime}(0)=h v(0)$, and $v^{\prime}(L)=0$. Substituting the B.C.s into the conditions above, we have
$p(L)\left[u(L) v^{\prime}(L)-v(L) u^{\prime}(L)\right]-p(0)\left[u(0) v^{\prime}(0)-v(0) u^{\prime}(0)\right]=p(L)[u(L) \cdot 0-v(L) \cdot 0]-p(0)[u(0) h v(0)-v(0) h u(0)]=0$.
Thus, these B.C.s give the operator L being self-adjoint.
d. If $\phi(a)=\phi(b)$ and $p(a) \phi^{\prime}(a)=p(b) \phi^{\prime}(b)$, then we have $u(a)=u(b), p(a) u^{\prime}(a)=p(b) u^{\prime}(b)$, $v(a)=v(b)$, and $p(a) v^{\prime}(a)=p(b) v^{\prime}(b)$. Substituting the B.C.s into the conditions above, we have

$$
\begin{aligned}
p(b)\left[u(b) v^{\prime}(b)-v(b) u^{\prime}(b)\right]-p(a)\left[u(a) v^{\prime}(a)-v(a) u^{\prime}(a)\right] & =u(b)\left[p(b) v^{\prime}(b)\right]-v(b)\left[p(b) u^{\prime}(b)\right]-u(a)\left[p(a) v^{\prime}(a)\right]+v(a)\left[p(a) u^{\prime}(a)\right], \\
& =u(a)\left[p(a) v^{\prime}(a)\right]-v(a)\left[p(a) u^{\prime}(a)\right]-u(a)\left[p(a) v^{\prime}(a)\right]+v(a)\left[p(a) u^{\prime}(a)\right], \\
& =0 .
\end{aligned}
$$

Thus, these B.C.s give the operator L being self-adjoint.
5.5.5. (10pts) Consider the operator $L=\frac{d^{2}}{d x^{2}}+6 \frac{d}{d x}+9$.
a. Apply the operator to $e^{r x}$, then we have

$$
\begin{aligned}
L\left(e^{r x}\right) & =\frac{d^{2}}{d x^{2}}\left(e^{r x}\right)+6 \frac{d}{d x}\left(e^{r x}\right)+9\left(e^{r x}\right), \\
& =r^{2} e^{r x}+6 r e^{r x}+9 e^{r x}=\left(r^{2}+6 r+9\right) e^{r x}=(r+3)^{2} e^{r x} .
\end{aligned}
$$

b. If $L(y)=0$ is a second order DE , then for $y=e^{r x}$ we have $L(y)=(r+3)^{2} y=0$ (Part a). For nontrivial solutions, $r=-3$, and $y=e^{-3 x}$ is a solution.
c. Consider $z(x, r)$, then $L(z)=\frac{d^{2} z}{d x^{2}}+6 \frac{d z}{d x}+9 z$, so

$$
\begin{aligned}
\frac{\partial}{\partial r}[L(z)] & =\frac{\partial}{\partial r}\left(\frac{d^{2} z}{d x^{2}}\right)+6 \frac{\partial}{\partial r}\left(\frac{d z}{d x}\right)+9 \frac{\partial z}{\partial r} \\
& =z_{x x r}+6 z_{x r}+9 z_{r} \\
L\left(z_{r}\right) & =\frac{d^{2} z_{r}}{d x^{2}}+6 \frac{d z_{r}}{d x}+9 z_{r}, \\
& =z_{r x x}+6 z_{r x}+9 z_{r} .
\end{aligned}
$$

Assuming that all the partial derivatives are continuous, we have $z_{r x x}=z_{x x r}$ and $z_{r x}=z_{x r}$, so

$$
\frac{\partial}{\partial r} L(z)=L\left(\frac{\partial z}{\partial r}\right)
$$

d. Let $z=e^{r x}$, then $\frac{\partial z}{\partial r}=x e^{r x}$. From Part c, we have

$$
L\left(x e^{r x}\right)=\frac{\partial}{\partial r}\left[L\left(e^{r x}\right)\right]=\frac{\partial}{\partial r}\left[(r+3)^{2} e^{r x}\right] .
$$

It follows that

$$
L\left(x e^{r x}\right)=2(r+3) e^{r x}+x(r+3)^{2} e^{r x}=e^{r x}(r+3)[2+x(r+3)] .
$$

e. From Part d, we have $L\left(x e^{r x}\right)=e^{r x}(r+3)[2+x(r+3)]$. From this expression it is clear that for all x, if $r=-3$, we have

$$
L\left(x e^{-3 x}\right)=0,
$$

so $y(x)=x e^{-3 x}$ is another solution to our linear operator L.
5.5.8. (15pts) Consider the $4^{\text {th }}$ order linear operator (often in beam problems)

$$
L=\frac{d^{4}}{d x^{4}} .
$$

a. We expand this operator

$$
\begin{aligned}
u L(v)-v L(u) & =u \cdot v^{(4)}-v \cdot u^{(4)} \\
& =u v^{(4)}+u^{\prime} v^{(3)}-u^{\prime} v^{(3)}-u^{\prime \prime} v^{\prime \prime}+u^{\prime \prime} v^{\prime \prime}+u^{(3)} v^{\prime}-u^{(3)} v^{\prime}-u^{(4)} v, \\
& =\left(u v^{(3)}\right)^{\prime}-\left(u^{\prime} v^{\prime \prime}\right)^{\prime}+\left(u^{\prime \prime} v^{\prime}\right)^{\prime}-\left(u^{(3)} v\right)^{\prime}=\left[u v^{(3)}-u^{\prime} v^{\prime \prime}+u^{\prime \prime} v^{\prime}-u^{(3)} v\right]^{\prime}, \\
& =\frac{d}{d x}\left[u v^{(3)}-u^{\prime} v^{\prime \prime}+u^{\prime \prime} v^{\prime}-u^{(3)} v\right]
\end{aligned}
$$

which is an exact differential.
b. We use the Fundamental Theorem of Calculus to integrate and evaluate this exact differential:

$$
\begin{aligned}
\int_{0}^{1}[u L(v)-v L(u)] d x & =\int_{0}^{1}\left[\frac{d}{d x}\left(u v^{(3)}-u^{\prime} v^{\prime \prime}+u^{\prime \prime} v^{\prime}-u^{(3)} v\right)\right] d x \\
& =\left.\left(u v^{(3)}-u^{\prime} v^{\prime \prime}+u^{\prime \prime} v^{\prime}-u^{(3)} v\right)\right|_{0} ^{1}
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\int_{0}^{1}[u L(v)-v L(u)] d x= & u(1) v^{(3)}(1)-u^{\prime}(1) v^{\prime \prime}(1)+u^{\prime \prime}(1) v^{\prime}(1)-u^{(3)}(1) v(1) \\
& -u(0) v^{(3)}(0)+u^{\prime}(0) v^{\prime \prime}(0)-u^{\prime \prime}(0) v^{\prime}(0)+u^{(3)}(0) v(0)
\end{aligned}
$$

c. If u and v are any two functions satisfying the B.C.'s, we have

$$
\begin{array}{ll}
u(0)=0, & u^{\prime}(0)=0, \\
v(1)=0, & u^{\prime \prime}(1)=0, \\
v(0)=0, & v^{\prime}(0)=0,
\end{array} \quad v(1)=0, \quad v^{\prime \prime}(1)=0 . ~ \$
$$

the expression in Part b becomes:

$$
\begin{aligned}
\int_{0}^{1}[u L(v)-v L(u)] d x= & 0 \cdot v^{(3)}(1)-u^{\prime}(1) \cdot 0+0 \cdot v^{\prime}(1)-u^{(3)}(1) \cdot 0 \\
& -0 \cdot v^{(3)}(0)+0 \cdot v^{\prime \prime}(0)-u^{\prime \prime}(0) \cdot 0+u^{(3)}(0) \cdot 0=0 .
\end{aligned}
$$

Thus, we have that L is self-adjoint with

$$
\int_{0}^{1}[u L(v)-v L(u)] d x=0 .
$$

d. Very clearly there are many other B.C.'s that result in this operator being self-adjoint. The most common are "pinned" B.C.'s, where $\phi(0)=0$ or $\phi(1)=0$, or "clamped" B.C.'s, where $\phi^{\prime}(0)=0$ or $\phi^{\prime}(1)=0$, or "free pivot (no force)" B.C.'s, where $\phi^{\prime \prime}(0)=0$ or $\phi^{\prime \prime}(1)=0$. Obviously, four appropriate conditions must be satisfied for L to be self-adjoint.
e. Let λ_{n} be eigenvalues with corresponding eigenfunctions ϕ_{n} and assume the B.C.'s of Part c for the eigenvalue problem:

$$
\frac{d^{4} \phi}{d x^{4}}+\lambda e^{x} \phi=0 .
$$

Let $\lambda_{n} \neq \lambda_{m}$ have associated eigenfunctions ϕ_{n} and ϕ_{m}. From the B.C.'s, we have:

$$
\begin{aligned}
& \int_{0}^{1}\left[\phi_{n} \cdot L\left(\phi_{m}\right)-\phi_{m} \cdot L\left(\phi_{n}\right)\right] d x=0, \\
& \text { or } \quad \int_{0}^{1}\left[\phi_{n} \cdot \phi_{m}^{(4)}-\phi_{m} \cdot \phi_{n}^{(4)}\right] d x=0 .
\end{aligned}
$$

However, since $\frac{d^{4} \phi}{d x^{4}}=-\lambda e^{x} \phi$, it follows that

$$
\begin{aligned}
\int_{0}^{1}\left[\phi_{n}\left(-\lambda_{m} e^{x} \phi_{m}\right)-\phi_{m}\left(-\lambda_{n} e^{x} \phi_{n}\right)\right] d x & =0 \\
\left(\lambda_{n}-\lambda_{m}\right) \int_{0}^{1} \phi_{m} \phi_{n} e^{x} d x & =0
\end{aligned}
$$

Since λ_{m} and λ_{n} are distinct eigenvalues, $\int_{0}^{1} \phi_{m} \phi_{n} e^{x} d x=0$, which shows that the eigenfunctions, ϕ_{i} are orthogonal with respect to the weighting function $\sigma(x)=e^{x}$.
5.5.11. (15pts) Consider the linear operator $L=p(x) \frac{d^{2}}{d x^{2}}+r(x) \frac{d}{d x}+q(x)$, we examine:

$$
\int_{a}^{b} v \cdot L(u) d x=\int_{a}^{b}\left(v p u^{\prime \prime}+v r u^{\prime}+v q u\right) d x=\int_{a}^{b} u^{\prime \prime} v p d x+\int_{a}^{b} u^{\prime} v r d x+\int_{a}^{b} u v q d x .
$$

Using integration by parts on the first integral gives:

$$
\begin{aligned}
\int_{a}^{b} u^{\prime \prime} v p d x & =\left.u^{\prime} v p\right|_{a} ^{b}-\int_{a}^{b} u^{\prime}\left(v p^{\prime}+v^{\prime} p\right) d x \\
& =\left.\left[u^{\prime} v p-u\left(v p^{\prime}+v^{\prime} p\right)\right]\right|_{a} ^{b}+\int_{a}^{b} u\left(v p^{\prime \prime}+2 v^{\prime} p^{\prime}+v^{\prime \prime} p\right) d x
\end{aligned}
$$

Using integration by parts on the second integral gives:

$$
\int_{a}^{b} u^{\prime} v r d x=\left.u v r\right|_{a} ^{b}-\int_{a}^{b} u\left(v r^{\prime}+v^{\prime} r\right) d x
$$

We combine these results to give:

$$
\begin{aligned}
\int_{a}^{b} v \cdot L(u) d x= & \int_{a}^{b} u\left[p \frac{d^{2} v}{d x^{2}}+\left(2 \frac{d p}{d x}-r\right) \frac{d v}{d x}+\left(\frac{d^{2} p}{d x^{2}}-\frac{d r}{d x}+q\right) v\right] d x \\
& -\left(p\left(u \frac{d v}{d x}-v \frac{d u}{d x}\right)+\left.u v\left(\frac{d p}{d x}-r\right)\right|_{a} ^{b}\right. \\
= & \int_{a}^{b} u L^{*}(v) d x-\left(p\left(u \frac{d v}{d x}-v \frac{d u}{d x}\right)+\left.u v\left(\frac{d p}{d x}-r\right)\right|_{a} ^{b}\right. \\
= & \int_{a}^{b} u L^{*}(v) d x-\left.H(x)\right|_{a} ^{b}
\end{aligned}
$$

where

$$
L^{*}=p \frac{d^{2}}{d x^{2}}+\left(2 \frac{d p}{d x}-r(x)\right) \frac{d}{d x}+\left(\frac{d^{2} p}{d x^{2}}-\frac{d r}{d x}+q(x)\right)
$$

and

$$
H(x)=p\left(u \frac{d v}{d x}-v \frac{d u}{d x}\right)+u v\left(\frac{d p}{d x}-r\right)
$$

Thus, we can write:

$$
\int_{a}^{b}\left[u L^{*}(v)-v L(u)\right] d x=\left.H(x)\right|_{a} ^{b}
$$

From these expressions we find that the operator L is self-adjoint ($L=L^{*}$) if and only if

$$
2 \frac{d p}{d x}-r(x)=r(x) \quad \text { or } \quad \frac{d p}{d x}=r(x)
$$

and $H(b)-H(a)=0$. Since $p^{\prime}=r$, the latter condition reduces to

$$
p(b)\left(u(b) v^{\prime}(b)-v(b) u^{\prime}(b)\right)-p(a)\left(u(a) v^{\prime}(a)-v(a) u^{\prime}(a)\right)=0 .
$$

b. Assume that the B.C.'s on u satisfy:

$$
u(0)=0 \quad \text { and } \quad \frac{d u}{d x}(L)+u(L)=0 \quad \text { or } \quad \frac{d u}{d x}(L)=-u(L)
$$

then for self-adjointness we need $H(L)-H(0)=0\left(\right.$ assuming $\left.p^{\prime}=r\right)$. These conditions imply:

$$
\begin{aligned}
H(L)-H(0) & =p(L)\left(u(L) v^{\prime}(L)-v(L) u^{\prime}(L)\right)-p(0)\left(u(0) v^{\prime}(0)-v(0) u^{\prime}(0)\right) \\
& =p(L) u(L)\left(v^{\prime}(L)+v(L)\right)-p(0)\left(v(0) u^{\prime}(0)\right)=0 .
\end{aligned}
$$

This condition will hold if

$$
v(0)=0 \quad \text { and } \quad v^{\prime}(L)+v(L)=0
$$

5.8.5. a. (8pts) Consider the heat equation:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}},
$$

with B.C.'s and I.C's

$$
\frac{\partial u}{\partial x}(0, t)=0 \quad \text { and } \quad \frac{\partial u}{\partial x}(L, t)=-h u(L, t), \quad \text { and } \quad u(x, 0)=f(x) .
$$

Start with separation of variables, $u(x, t)=\phi(x) g(t)$, so

$$
\phi g^{\prime}=k \phi^{\prime \prime} g \quad \text { or } \quad \frac{g^{\prime}}{k g}=\frac{\phi^{\prime \prime}}{\phi}=-\lambda .
$$

Let $h>0$ and consider the SL problem:

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \text { with B.C.'s } \quad \phi^{\prime}(0)=0 \quad \text { and } \quad \phi^{\prime}(L)+h \phi(L)=0 .
$$

If $\lambda=-\alpha^{2}<0$, then $\phi(x)=c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x)$. If $\phi^{\prime}(0)=0$, then $c_{2}=0$. For $\phi^{\prime}(L)+h \phi(L)=0$, then $c_{1}(\alpha \sinh (\alpha L)+h \cosh (\alpha L))=0$, which implies $c_{1}=0($ for $h>0$) and only the trivial solution exists. Similarly, if $\lambda=0$, then $\phi(x)=c_{1} x+c_{2}$. With $\phi^{\prime}(0)=0$, then $c_{1}=0$. The B.C. $\phi^{\prime}(L)+h \phi(L)=h c_{2}=0$ shows that $c_{2}=0$, which again leaves only the trivial solution.

If $\lambda=\alpha^{2}>0$, then $\phi(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)$. If $\phi^{\prime}(0)=0$, then $c_{2}=0$. For $\phi^{\prime}(L)+$ $h \phi(L)=0$, then $c_{1}(-\alpha \sin (\alpha L)+h \cos (\alpha L))=0$. This has nontrivial solutions when $\tan (\alpha L)=$ $\frac{h L}{\alpha L}$. Thus, we have eigenfunctions:

$$
\phi_{n}(x)=\cos \left(\sqrt{\lambda_{n}} x\right),
$$

where the eigenvalues λ_{n} solve the transcendental equation:

$$
\tan (\sqrt{\lambda} L)=\frac{h L}{\sqrt{\lambda} L} .
$$

The temporal equation is $g^{\prime}=-k \lambda_{n} g$, which has the solution, $g_{n}(t)=a_{n} e^{-k \lambda_{n} t}$.
The superposition principle gives:

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-k \lambda_{n} t} \cos \left(\sqrt{\lambda_{n}} x\right) .
$$

Applying the I.C. yields:

$$
u(x, 0)=\sum_{n=1}^{\infty} a_{n} \cos \sqrt{\lambda_{n}} x=f(x) .
$$

By the orthogonality of $\phi(x)$, we obtain the Fourier coefficients:

$$
a_{n}=\frac{\int_{0}^{L} f(x) \phi_{n}(x) d x}{\int_{0}^{L} \phi_{n}^{2}(x) d x}=\frac{\int_{0}^{L} f(x) \cos \left(\sqrt{\lambda_{n}} x\right) d x}{\int_{0}^{L} \cos ^{2}\left(\sqrt{\lambda_{n}} x\right) d x} .
$$

b. (12pts) If $h<0$ (non-physical case), then similar to Part a, there are eigenfunctions:

$$
\phi_{n}(x)=\cos \left(\sqrt{\lambda_{n}} x\right),
$$

where the eigenvalues λ_{n} solve the transcendental equation:

If $\lambda=-\alpha^{2}<0$, then $\phi(x)=c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x)$. If $\phi^{\prime}(0)=0$, then $c_{2}=0$. For $\phi^{\prime}(L)+h \phi(L)=0$, then $c_{1}(\alpha \sinh (\alpha L)+h \cosh (\alpha L))=0$. If $\alpha \sinh (\alpha L)+h \cosh (\alpha L)=0$, then $\tanh (\alpha L)=-\frac{h L}{\alpha L}$. This equation has a unique solution, producing a negative eigenvalue. The graph below shows a typical intersection from the equation above.

Thus, we have one negative eigenvalue λ_{-1} with corresponding eigenfunction:

$$
\phi_{-1}(x)=\cosh \left(\sqrt{-\lambda_{-1}} x\right) .
$$

As before, the temporal problem has the solution:

$$
g(t)=e^{-\lambda_{n} k t}, \quad n=-1,1,2, \ldots
$$

Numerically, we find the first five eigenvalues, $\lambda_{-1}, \lambda_{1}, \lambda_{2}, \lambda_{3}$, and λ_{4}. These eigenvalues are

$$
\begin{array}{ccc}
\lambda_{-1}=-1.439229 & \lambda_{1}=7.830964 & \lambda_{2}=37.469707 \\
\lambda_{3}=86.822635 & \lambda_{4}=155.911544 &
\end{array}
$$

We apply the superposition principle to obtain the solution:

$$
u(x, t)=a_{-1} e^{-\lambda_{-1} k t} \cosh \left(\sqrt{-\lambda_{-1}} x\right)+\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n} k t} \cos \left(\sqrt{\lambda_{n}} x\right) .
$$

The I.C. gives:

$$
u(x, 0)=f(x)=a_{-1} \cosh \left(\sqrt{-\lambda_{-1}} x\right)+\sum_{n=1}^{\infty} a_{n} \cos \left(\sqrt{\lambda_{n}} x\right) .
$$

From the orthogonality of the eigenfunctions, the Fourier coefficients satisfy:

$$
a_{n}=\frac{\int_{0}^{L} f(x) \phi_{n}(x) d x}{\int_{0}^{L} \phi_{n}^{2}(x) d x}=\left\{\begin{array}{lc}
\frac{\int_{0}^{L} f(x) \cosh \sqrt{-\lambda_{-1}} x d x}{\int_{0}^{L} \cosh ^{2} \sqrt{-\lambda-1} x d x}, & n=-1, \\
\frac{\int_{0}^{L} f(x) \cos \sqrt{\lambda_{n}} x d x}{\int_{0}^{L} \cos ^{2} \sqrt{\lambda_{n}} x d x}, & n \geq 1
\end{array}\right.
$$

5.8.8. a. (5pts) Consider the BVP:

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \text { with } \quad \phi(0)-\phi^{\prime}(0)=0 \quad \text { and } \quad \phi(1)+\phi^{\prime}(1)=0 .
$$

The Rayleigh quotient gives

$$
\lambda=\frac{-\left.\phi \frac{d \phi}{d x}\right|_{0} ^{1}+\int_{0}^{1}\left(\frac{d \phi}{d x}\right)^{2} d x}{\int_{0}^{1} \phi^{2} d x} .
$$

However, since $\phi^{\prime}(1)=-\phi(1)$ and $\phi^{\prime}(0)=\phi(0)$, we see that

$$
-\left.\phi \phi^{\prime}\right|_{0} ^{1}=-\phi(1) \phi^{\prime}(1)+\phi(0) \phi^{\prime}(0)=\phi^{2}(1)+\phi^{2}(0),
$$

so it follows that

$$
\lambda=\frac{\phi^{2}(1)+\phi^{2}(0)+\int_{0}^{1}\left(\phi^{\prime}\right)^{2} d x}{\int_{0}^{1} \phi^{2} d x} \geq 0 .
$$

If $\lambda=0$, then the expression above implies that $\phi^{\prime}=0$ or ϕ is constant. The B.C.'s show that if ϕ is constant, then $\phi(x) \equiv 0$, so is not an eigenfunction. Thus, it follows that $\lambda>0$.
b. (5pts) Let $L=\frac{d^{2}}{d x^{2}}$ and ϕ_{n} and ϕ_{m} eigenfunctions with eigenvalues λ_{n} and λ_{m} for $n \neq m$. It follows that

$$
L\left[\phi_{n}\right]+\lambda_{n} \phi_{n}=0 \quad \text { and } \quad L\left[\phi_{m}\right]+\lambda_{m} \phi_{m}=0
$$

so

$$
\int_{0}^{1}\left(\phi_{m}\left(L\left[\phi_{n}\right]+\lambda_{n} \phi_{n}\right)-\phi_{n}\left(L\left[\phi_{m}\right]+\lambda_{m} \phi_{m}\right)\right) d x=0
$$

or

$$
\int_{0}^{1}\left(\phi_{m} L\left[\phi_{n}\right]-\phi_{n} L\left[\phi_{m}\right]+\left(\lambda_{n}-\lambda_{m}\right) \phi_{n} \phi_{m}\right) d x=0
$$

So integrating by parts gives

$$
\left[\phi_{m} \frac{d}{d x} \phi_{n}-\left.\phi_{n} \frac{d}{d x} \phi_{m}\right|_{0} ^{1}+\left(\lambda_{n}-\lambda_{m}\right) \int_{0}^{1} \phi_{n} \phi_{m} d x=0,\right.
$$

or

$$
\phi_{m}(1) \phi_{n}^{\prime}(1)-\phi_{n}(1) \phi_{m}^{\prime}(1)-\phi_{m}(0) \phi_{n}^{\prime}(0)+\phi_{n}(0) \phi_{m}^{\prime}(0)+\left(\lambda_{n}-\lambda_{m}\right) \int_{0}^{1} \phi_{n} \phi_{m} d x=0
$$

Since the B.C.'s satisfy $\phi^{\prime}(1)=-\phi(1)$ and $\phi^{\prime}(0)=\phi(0)$, the expression above reduces to

$$
\left(\lambda_{n}-\lambda_{m}\right) \int_{0}^{1} \phi_{n} \phi_{m} d x=0 \quad \text { or } \quad \int_{0}^{1} \phi_{n} \phi_{m} d x=0 .
$$

Therefore, ϕ_{n} and ϕ_{m} are orthogonal.
c. (9pts) We solve $\phi^{\prime \prime}+\lambda \phi=0$ (with $\lambda>0$). The general solution is

$$
\phi(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x), \quad \text { so } \quad \phi^{\prime}(x)=-c_{1} \sqrt{\lambda} \sin (\sqrt{\lambda} x)+c_{2} \sqrt{\lambda} \cos (\sqrt{\lambda} x) .
$$

The B.C. $\phi(0)-\phi^{\prime}(0)=0$ gives $c_{1}-c_{2} \sqrt{\lambda}=0$ or $c_{1}=c_{2} \sqrt{\lambda}$. The other B.C. $\phi(1)+\phi^{\prime}(1)=0$ gives:

$$
c_{2} \sqrt{\lambda} \cos (\sqrt{\lambda})+c_{2} \sin (\sqrt{\lambda})-c_{2} \lambda \sin (\sqrt{\lambda})+c_{2} \sqrt{\lambda} \cos (\sqrt{\lambda})=0
$$

Combining terms gives

$$
c_{2}[2 \sqrt{\lambda} \cos (\sqrt{\lambda})+(1-\lambda) \sin (\sqrt{\lambda})]=0
$$

which for nontrivial solutions yields $2 \sqrt{\lambda} \cos (\sqrt{\lambda})+(1-\lambda) \sin (\sqrt{\lambda})=0$ or

$$
\tan (\sqrt{\lambda})=\frac{2 \sqrt{\lambda}}{\lambda-1}
$$

Below is a graph of the right and left hand functions of $\sqrt{\lambda}$ with intersections producing the square root of eigenvalues.

If $f(\sqrt{\lambda})=\frac{2 \sqrt{\lambda}}{(\lambda-1)}$ and $g(\sqrt{\lambda})=\tan \sqrt{\lambda}$ are the right and left hand functions for the eigenvalue equation, then $f(x)=g(x)$ at $x=0$, which is not an eigenvalue. All subsequent intersections occur after the vertical asymptote at $x=1$. We have $0<\sqrt{\lambda_{1}}<\frac{\pi}{2}, \pi<\sqrt{\lambda_{2}}<\frac{3 \pi}{2}, 2 \pi<$ $\sqrt{\lambda_{3}}<\frac{5 \pi}{2}, \ldots$ Furthermore, we readily see that $\lim _{\sqrt{\lambda} \rightarrow \infty} f(\sqrt{\lambda})=0$. It follows that

$$
(n-1) \pi<\sqrt{\lambda_{n}}<\frac{(2 n-1) \pi}{2}, \quad n \geq 1
$$

and for large n

$$
\sqrt{\lambda_{n}} \simeq(n-1) \pi .
$$

d. (6pts) Consider the heat equation:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad \text { with I.C. } \quad u(x, 0)=f(x),
$$

and B.C.'s $u(0, t)-u_{x}(0, t)=0$ and $u(1, t)+u_{x}(1, t)=0$. Separation of variables with $u(x, t)=$ $\phi(x) h(t)$ gives:

$$
\frac{h^{\prime}}{k h}=\frac{\phi^{\prime \prime}}{\phi}=-\lambda .
$$

This produces the SL problem:

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \text { with } \quad \phi(0)-\phi^{\prime}(0)=0 \quad \text { and } \quad \phi(1)+\phi^{\prime}(1)=0,
$$

where λ satisfies the equation $\tan (\sqrt{\lambda})=\frac{2 \sqrt{\lambda}}{\lambda-1}$. From Part c, we produced the eigenfunctions:

$$
\phi_{n}(x)=\sqrt{\lambda_{n}} \cos \left(\sqrt{\lambda_{n}} x\right)+\sin \left(\sqrt{\lambda_{n}} x\right)
$$

which were orthogonal according to Part b.
The time-dependent problem is readily solved:

$$
h^{\prime}+\lambda_{n} k h=0, \quad \text { so } \quad h(t)=c e^{-\lambda_{n} k t} .
$$

The superposition principle gives:

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-k \lambda_{n} t} \phi_{n}(x) .
$$

To satisfy the I.C. we need:

$$
u(x, 0)=\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)=f(x) .
$$

We multiply by $\phi_{m}(x)$ and integrate from 0 to 1 . Using orthogonality, we obtain:

$$
a_{m} \int_{0}^{1} \phi_{m}^{2}(x) d x=\int_{0}^{1} f(x) \phi_{m}(x) d x \quad \text { or } \quad a_{m}=\frac{\int_{0}^{1} f(x) \phi_{m}(x) d x}{\int_{0}^{1} \phi_{m}^{2}(x) d x}
$$

5.8.11. (5pts) Consider the SL problem:

$$
\phi^{\prime \prime}+5 \phi=-\lambda \phi, \quad \text { with } \quad \phi(0)=0 \quad \text { and } \quad \phi(\pi)=0 .
$$

Let $\mu=\lambda+5$, then we are solving the SL problem:

$$
\phi^{\prime \prime}+\mu \phi=0 \quad \text { with } \quad \phi(0)=0 \quad \text { and } \quad \phi(\pi)=0 .
$$

We have seen before that this problem has eigenvalues, μ_{n}, and eigenfunctions $\phi_{n}(x)$ given by:

$$
\mu_{n}=n^{2} \quad \text { with } \quad \phi_{n}(x)=\sin (n x), \quad n=1,2,3, \ldots
$$

However, $\lambda_{n}=\mu_{n}-5=n^{2}-5$, so the first eigenvalues are

$$
\begin{aligned}
& \lambda_{1}=1-5=-4, \\
& \lambda_{2}=4-5=-1, \\
& \lambda_{3}=9-5=4, \\
& \lambda_{n}>0, \text { for } n \geq 3 .
\end{aligned}
$$

The negative eigenvalues are $\lambda_{1}=-4$ and $\lambda_{2}=-1$.

WeBWorK 2. a. (5pts) Consider the SL problem ($h>0$):

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \text { with } \quad \phi^{\prime}(0)=0 \quad \text { and } \quad \frac{d \phi}{d x}(L)+h \phi(L)=0,
$$

where $p(x)=1, q(x)=0$, and $\sigma(x)=1$. The Rayleigh quotient satisfies:

$$
\lambda=\frac{-\left.p \phi \phi^{\prime}\right|_{0} ^{L}+\int_{0}^{L}\left(p\left(\phi^{\prime}\right)^{2}-q \phi^{2}\right) d x}{\int_{0}^{L} \phi^{2} \sigma d x} .
$$

We use the information on p, q, and σ with $\phi^{\prime}(L)=-h \phi(L)(h>0)$ to reduce the expression above to

$$
\lambda=\frac{-\phi(L) \phi^{\prime}(L)+\int_{0}^{L}\left(\phi^{\prime}\right)^{2} d x}{\int_{0}^{L} \phi^{2} d x}=\frac{h \phi^{2}(L)+\int_{0}^{L}\left(\phi^{\prime}\right)^{2} d x}{\int_{0}^{L} \phi^{2} d x} \geq 0 .
$$

If $\lambda=0$, then $\phi^{\prime}=0$, which implies $\phi(x)=C$. However, $\phi^{\prime}(L)=0=-h \phi(L)$ gives $\phi(x) \equiv 0$, which is not an eigenfunction. Thus, $\lambda>0$.
c. (5pts) From Problem 5.8.5 above we find the eigenfunctions are:

$$
\phi_{n}(x)=\cos \left(\sqrt{\lambda_{n}} x\right),
$$

where the eigenvalues λ_{n} solve the transcendental equation:

$$
\tan (\sqrt{\lambda} L)=\frac{h L}{\sqrt{\lambda} L}
$$

The graph above shows that each eigenvalue lies in an interval:

$$
\sqrt{\lambda_{n}} \in\left(\frac{(n-1) \pi}{L}, \frac{(2 n-1) \pi}{2 L}\right) \quad \text { with } \quad \sqrt{\lambda_{n}} \rightarrow \frac{n \pi}{L}, \quad \text { as } \quad n \rightarrow \infty .
$$

Below we graph the eigenfunction:

We see that the eigenfunction, $\phi_{1}(x)$ has no zeros for $x \in\left[0, \sqrt{\lambda_{1}} L\right]$. For the eigenfunction, $\phi_{2}(x)$ there is one zero for $x \in\left[0, \sqrt{\lambda_{2}} L\right]$. Similarly, we see that the eigenfunction, $\phi_{3}(x)$ there are two zeros for $x \in\left[0, \sqrt{\lambda_{3}} L\right]$. Asymptotically, we have $\sqrt{\lambda_{n}} \rightarrow \frac{n \pi}{L}$, and we know that $\phi_{n}(x) \approx \cos \left(\frac{n \pi x}{L}\right)$ has $n-1$ zeros for $x \in[0, L]$, which was the desired result.

