
Spring Homework 4 Math 531

3.3.1(c) (10pts) Sketch f(x), the Fourier series of f(x), the Fourier sine series of f(x), and the
Fourier cosine series of f(x).

f(x) =

{
x, x < 0,
1 + x, x > 0.
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3.3.14 a (15pts) Consider a function f(x) that is even around x = L
2 . Show that the even

coefficients (n odd)of the Fourier cosine series of f(x) on 0 ≤ x ≤ L are zero.

Proof: The odd coefficients of the Fourier cosine series are:

a2k+1 =
2

L

∫ L

0
f(x) cos

(
(2k+1)πx

L

)
dx =

2

L

∫ L/2

−L/2
f(s+ L/2) cos

(
(2k+1)π(s+L/2)

L

)
ds,

which results from the translation, x = s+ L/2. By trig identities, it follows that:

a2k+1 =
2

L

∫ L/2

−L/2
f(s+ L/2)

[
cos
(
(2k+1)πs

L

)
cos
(
(2k+1)π

2

)
− sin

(
(2k+1)πs

L

)
sin
(
(2k+1)π

2

)]
ds.

However, cos
(
(2k+1)π

2

)
= 0 and sin

(
(2k+1)π

2

)
= (−1)k+1, so

a2k+1 =
2

L

∫ L/2

−L/2
(−1)kf(s+ L/2) sin

(
(2k+1)πs

L

)
ds.



In the integral above, the function f is even about L/2, which was translated to the origin, and
the sine function is odd about the origin. The product of this even and odd function is an odd
function, so the symmetric integral about the origin is zero. It follows that:

a2k+1 = 0.

which completes the proof. q.e.d.

b. On 0 ≤ x ≤ L
2 , the cosine series of f(x) is given by

f(x) =

∞∑
n=0

an cos
nπx

L/2
=

∞∑
n=0

an cos

(
2nπx

L

)
.

The Fourier coefficients are

an =
2

L/2

∫ L/2

0
f(x) cos

(
2nπx

L

)
dx =

4

L

∫ L/2

0
f(x) cos

(
2nπx

L

)
dx.

Since f(x) is even around L
2 ,

4

L

∫ L/2

0
f(x) cos

(
2nπx
L

)
dx =

2

L

∫ L/2

0
f(x) cos

(
2nπx
L

)
dx+

2

L

∫ L/2

0
f(x) cos

(
2nπx
L

)
dx

=
2

L

∫ L/2

0
f(x) cos

(
2nπx
L

)
dx+

2

L

∫ L

L/2
f(x) cos

(
2nπx
L

)
dx

=
2

L

∫ L

0
f(x) cos

(
2nπx
L

)
dx

This last term gives the even coefficients of the original series for x ∈ [0, L]. Since these series
are the same, it follows that the odd coefficients of the original series must be zero.

3.4.6. (10pts) We assume that

ex = A0 +
∞∑
n=1

An cos
(
nπx
L

)
.

There is no problem differentiating this series term-by-term to obtain a sine series:

ex = −
∞∑
n=1

nπ

L
An sin

(
nπx
L

)
.

The error is in the second step, differentiating the Fourier sine series of ex because the sine
series is not continuous at x = 0 and ex 6= 0 at x = 0 and x = L. The text has a generalization
in Section 3.4 (Eqn. 3.4.13) for differentiation of the sine series when the derivative is only
piecewise smooth. Since d

dx(ex) = ex, the formula gives:

ex ∼ 1

L
[eL − 1]−

∞∑
n=1

[
n2π2

L2
An +

2

L
((−1)neL − 1)

]
cos
(
nπx
L

)
.

Comparing this to the original function, we see

A0 =
1

L

(
eL − 1

)



and

An = −n
2π2

L2
An +

2

L
((−1)neL − 1),

so

An =
2L

L2 + n2π2
(
(−1)neL − 1

)
, n ≥ 1.

3.4.11. (15pts) Consider the nonhomogeneous PDE:

∂u

∂t
= k

∂2u

∂x2
+ g(x).

Assume the IC u(x, 0) = f(x) and BC u(0, t) = 0 and u(L, t) = 0. The Dirichlet BCs imply an
eigenfunction expansion of the form:

u(x) =
∞∑
n=1

Bn(t) sin
nπx

L
.

We can readily differentiate w.r.t. t and the homogeneous BCs allow two derivatives w.r.t. x,
giving:

∂u

∂t
=
∞∑
n=1

dBn
dt

sin
(
nπx
L

)
and

∂2u

∂x2
=
∞∑
n=1

−
(nπ
L

)2
Bn(t) sin

(
nπx
L

)
.

Assume that g(x) can be expanded into a sine series giving:

g(x) =

∞∑
n=1

Gn sin
(
nπx
L

)
.

From the nonhomogeneous PDE, we have

∞∑
n=1

dBn
dt

sin
(
nπx
L

)
= −k

∞∑
n=1

(nπ
L

)2
Bn(t) sin

(
nπx
L

)
+
∞∑
n=1

Gn sin
(
nπx
L

)
.

Collecting the coefficients of the sine series gives the nonhomogeneous ODE:

dBn
dt

+ k
(nπ
L

)2
Bn(t) = Gn.

This equation is readily solved using techniques from linear ODEs (integrating factors) and the
solution satisfies:

Bn(t) = Ane
−k(nπL )

2
t +

(
L2

kn2π2

)
Gn.

From the IC,

f(x) =

∞∑
n=1

Bn(0) sin
(
nπx
L

)
,

so

Bn(0) =
2

L

∫ L

0
f(x) sin

(
nπx
L

)
dx.



However, we have

Bn(0) = An +

(
L2

kn2π2

)
Gn,

which gives

An =
2

L

∫ L

0
f(x) sin

(
nπx
L

)
dx−

(
L2

kn2π2

)
Gn.

It follows that

u(x, t) =
∞∑
n=1

Bn(t) sin
(
nπx
L

)
,

with

Bn(t) =

(
2

L

∫ L

0
f(x) sin

(nπx
l

)
dx−

(
L2

kn2π2

)
Gn

)
e−k(

nπ
L )

2
t +

(
L2

kn2π2

)
Gn.

Written part of WeBWorK Problems. Points are exclusively for the graphs, as WeBWorK
graded the Fourier coefficients.

WW Fourier 3.2.2a. (5pts) Finding the Fourier series of

f(x) = 1.2x,

where the coefficient and the interval of interest varies. Since this is an odd function, an = 0
for n = 0, 1, ... The sine series satisfies

f(x) ∼
∞∑
n=1

7.2(−1)n+1

nπ
sin
(nπx

3

)
.

Below shows in black where this Fourier series converges and the truncated series graphs for
n = 5 and 20 terms in the series.
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WW Fourier 3.2.2b. (5pts) Finding the Fourier series of

f(x) = 1.5e−x,

where the coefficient and the interval of interest varies. The Fourier series satisfies

f(x) ∼ a0 +
∞∑
n=1

(
an cos

(nπx
3

)
+ bn sin

(nπx
3

))
,

where a0 = e3−e−3

4 , and

an =
4.5(e3 − e−3)(−1)n

9 + n2π2
and bn =

1.5nπ(e3 − e−3)(−1)n

9 + n2π2
.

Below shows in black where this Fourier series converges and the truncated series graphs for
n = 5 and 20 terms in the series.
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WW Fourier 3.3.2b. (5pts) Finding the Fourier sine series of

f(x) =


1, x < 2

3 ,
5, 2

3 ≤ x < 2,
0, x > 2

where the step values and the intervals of interest vary. The Fourier series satisfies

f(x) ∼
∞∑
n=1

bn sin
(nπx

4

)
,

where

bn =
2

nπ

((
1− cos

(nπ
6

))
+ 5

(
cos
(nπ

6

)
− cos

(nπ
2

)))
.

Below shows in black where this Fourier series converges and the truncated series graphs for
n = 5 and 20 terms in the series.
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WW Fourier 3.3.5c. (5pts) Finding the Fourier cosine series of

f(x) =

{
0, x < 3,

1.1x, x > 3,

where the linear coefficient and the intervals of interest vary. The Fourier series satisfies

f(x) ∼ a0 +
∞∑
n=1

an cos
(nπx

6

)
,

where a0 = 2.475 and

an =
6.6

n2π2

(
2(−1)n − 2 cos

(nπ
2

)
− nπ sin

(nπ
2

))
.

Below shows in black where this Fourier series converges and the truncated series graphs for
n = 5 and 20 terms in the series.
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