
Spring Homework 3 - Solutions Math 531

2.4.1 Consider the PDE

∂u

∂t
= k

∂2u

∂x2
with BCs

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0, t > 0.

This is the heat equation with insulated BCs. Let u(x, t) = φ(x)h(t), then by separation of
variables φh ′ = kφ′′h, so

h ′

kh
=
φ′′

φ
= −λ.

The resulting Sturm-Liouville problem is

φ′′ + λφ = 0 with φ′(0) = 0 and φ′(L) = 0.

This problem can be shown to have eigenvalue λ0 = 0 with eigenfunction φ0(x) = 1 and

eigenvalues λn = n2π2

L2 with eigenfunctions φn(x) = cos
(
nπx
L

)
. The time varying problem has

hn(t) = cne
−kn2π2t/L2

. This gives

un(x, t) = Ane
− kn

2π2t
L2 cos

(nπx
L

)
, n = 1, 2, ...

The superposition principle gives

u(x, t) = A0 +
∞∑
n=1

Ane
− kn

2π2t
L2 cos

(nπx
L

)
.

We demonstrated that there were no eigenvalues λ < 0. The Fourier coefficients are

A0 =
1

L

∫ L

0
f(x) dx and An =

2

L

∫ L

0
f(x) cos

(nπx
L

)
dx.

a. (8pts)Consider the initial condition:

f(x) = u(x, 0) =

{
0 x < L

2

1 x > L
2

The Fourier coefficients are:

A0 =
1

L

∫ L

0
f(x) dx =

1

L

∫ L

L/2
dx =

1

L

[
L− L

2

]
=

1

2

and

An =
2

L

∫ L

L/2
cos
(nπx
L

)
dx =

2

L

L

nπ
sin
(nπx
L

)∣∣∣∣L
L/2

=
2

nπ

[
sin(nπ)− sin(

nπ

2
)
]

= − 2

nπ
sin
(nπ

2

)
.

The superposition principle gives the solution:

u(x, t) =
1

2
−
∞∑
n=1

2

nπ
sin
(nπ

2

)
e−

n2π2

L2 kt cos
(nπx
L

)
.



c) (7pts) Consider the initial condition:

f(x) = u(x, 0) = −2 sin
πx

L
.

The Fourier coefficients are:

A0 =
1

L

∫ L

0

(
−2 sin

(πx
L

))
dx =

2

π
cos
(πx
L

)∣∣∣∣L
0

=
2

π
[cos(π)− cos(0)] = − 4

π

and

An =
2

L

∫ L

0
−2 sin

(πx
L

)
cos
(nπx
L

)
dx = − 4

L

∫ L

0
sin
(πx
L

)
cos
(nπx
L

)
dx

= − 2

L

∫ L

0
sin
(π
L

(1 + n)x
)

+ sin
(π
L

(1− n)x
)
dx.

For n = 1,

A1 = − 2

L

∫ L

0
sin

(
2πx

L

)
dx =

1

π
cos

(
2πx

L

)∣∣∣∣L
0

= 0.

For n > 1,

An =
2

π

[
1

(1 + n)
cos

π

L
(1 + n)x +

1

(1− n)
cos

π

L
(1− n)x

]L
0

=
2

π

[
1

(1 + n)
(cos(π(1 + n))− 1) +

1

(1− n)
(cos(π(1− n))− 1)

]
=

2

π

[
1

(1 + n)

(
(−1)1+n − 1

)
+

1

(1− n)

(
(−1)1−n − 1

)]
.

Thus, if n is odd, then An = 0. If n is even, then

An =
2

π

[
−2

1 + n
+
−2

1− n

]
=

8

π(n2 − 1)
.

All even numbers are of the form A2n = 8
π(4n2−1) , so it follows that

u(x, t) = − 4

π
+

8

π

∞∑
n=1

1

4n2 − 1
e

−4n2π2

L2 kt cos

(
2nπx

L

)
.

2.4.2 (10pts) Consider the PDE:

ut = uxx,
∂u

∂x
(0, t) = 0, u(L, t) = 0, u(x, 0) = f(x).

Use separation of variables u(x, t) = φ(x)G(t), so

φ(x)G′(t) = kφ′′(x)G(t) or
1

kG

dG

dt
=

1

φ

d2φ

dx2
= −λ.



This gives the ODE in t as dG
dt = −kλG, which has the solution:

G(t) = ce−λkt.

The Sturm-Liouville problem is

φ′′ + λφ = 0 with BCs φ′(0) = 0 and φ(L) = 0.

Case i: Suppose λ = −α2 < 0. This solution will grow in time because of the form of G(t),
contradicting one of the assumptions. Alternately,

φ(x) = c1 cosh(αx) + c2 sinh(αx).

Since φ′(0) = 0, c2 = 0. The other BC gives φ(L) = c1 cosh(αL) = 0, so c1 = 0, leaving only
the trivial solution.

Case ii: Suppose that λ = 0, then φ(x) = c1x+ c2. The first BC φ′(0) = c1 = 0. The other BC
gives φ(L) = c2 = 0, so again there is only the trivial solution.

Case iii: Suppose that λ = α2 > 0, then

φ(x) = c1 cos(αx) + c2 sin(αx).

Since φ′(0) = 0, c2 = 0. The other BC gives

φ(L) = c1 cos(αL) = 0 or αL =
(2n− 1)π

2
, n = 1, 2, ...

It follows that we have eigenvalues and eigenfunctions:

λn =
((2n− 1)π)2

4L2
and φn(x) = cos

(
(2n− 1)πx

2L

)
, n = 1, 2, ...

By the superposition principle, the solution is:

u(x, t) =
∞∑
n=1

Ane
− ((2n−1)π)2

4L2 t cos

(
(2n− 1)πx

2L

)
.

The initial condition is

u(x, 0) = f(x) =
∞∑
n=1

An cos
(2n− 1)πx

2L
.

Multiply by the mth eigenfunction and integrate 0 to L, so∫ L

0
f(x) cos

(2m− 1)πx

2L
dx =

∞∑
n=1

An

∫ L

0
cos

(2n− 1)πx

2L
cos

(2m− 1)πx

2L
dx

= Am

(
L

2

)
,

from the orthogonality of the eigenfunctions (or computing the integrals m 6= n). It follows
that the Fourier coefficients are:

An =
2

L

∫ L

0
f(x) cos

(2n− 1)πx

2L
dx.



2.5.1 (10pts) d. Consider the Laplace’s equation:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0

The BCs are:

u(0, y) = g(y), u(L, y) = 0,
∂u

∂y
(x, 0) = 0, u(x,H) = 0.

Assume u(x, y) = h(x)φ(y), so

h′′(x)φ(y) + h(x)φ′′(y) = 0 or
h′′(x)

h(x)
= −φ

′′(y)

φ(y)
= λ.

This leads to an ODE in x:

h′′(x)− λh(x) = 0, h(L) = 0.

and the Sturm-Liouville problem in y

φ′′(y) + λφ(y) = 0, φ′(0) = 0, φ(H) = 0.

Consider 3 cases: i. λ = −α2 < 0, so φ(y) = c1 cosh(αy) + c2 sinh(αy). Since φ′(0) = 0, we
have c2 = 0. Then φ(H) = c1 cosh(αH) = 0 implies c1 = 0, so only the trivial solution solves
this case.
ii. λ = 0, so φ(y) = c1y + c2. Since φ′(0) = 0, we have c1 = 0. Then φ(H) = c2 = 0 implies
c2 = 0, so only the trivial solution solves this case.
iii. λ = α2 > 0, so φ(y) = c1 cos(αy) + c2 sin(αy). Since φ′(0) = 0, we have c2 = 0. Then
φ(H) = c1 cos(αH) = 0 implies we have eigenvalues and eigenfunctions:

λn =
(n− 1/2)2π2

H2
, φn = cos

(
(n− 1/2)πy

H

)
, n = 1, 2, ...

The first ODE becomes, h′′(x)− λnh(x) = 0, or

h(x) = c1 cosh

(
(n− 1/2)π

H
(L− x)

)
+ c2 sinh

(
(n− 1/2)π

H
(L− x)

)
.

Since h(L) = 0, it is easy to see that

h(L) = c1 cosh(0) = 0 or c1 = 0.

Thus,

h(x) = c2 sinh

(
(n− 1/2)π

H
(L− x)

)
.

The product solution is

un(x, y) = An cos

(
(n− 1/2)πy

H

)
sinh

(
(n− 1/2)π

H
(L− x)

)
, n = 1, 2, ...



Thus the principle of superposition leads to the general solution:

u(x, y) =
∞∑
n=1

An cos

(
(n− 1/2)πy

H

)
sinh

(
(n− 1/2)π

H
(L− x)

)
The left edge BC gives:

u(0, y) =

∞∑
n=1

An cos

(
(n+ 1/2)πy

H

)
sinh

(
(n− 1/2)πL

H

)
= g(y).

Multiplying by φm(y) and integrating y ∈ [0, H], we obtain:∫ H

0
g(y)φm(y) dy =

∞∑
n=1

An sinh

(
(n− 1/2)πL

H

)∫ H

0
φn(y)φm(y) dy.

By orthogonality, ∫ H

0
φn(y)φm(y) dy =

{
0, m 6= n,

H/2, m = n
,

we obtain the Fourier coefficients:

An =
2

H sinh
(
(n−1/2)πL

H

) ∫ H

0
g(y) cos

(
(n− 1/2)πy

H

)
dy n = 1, 2, ...

2.5.1 (10pts) g. Consider Laplace’s equation

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0.

The BCs are

∂u

∂x
(0, y) = 0,

∂u

∂x
(L, y) = 0, u(x, 0) =

{
0 x > L

2

1 x < L
2

,
∂u

∂y
(x,H) = 0.

Assume u(x, y) = φ(x)G(y), and we obtain the two ODEs as before,

φ′′ + λφ(x) = 0, φ′(0) = 0, φ′(L) = 0

G′′(y)− λG(y) = 0, G′(H) = 0

The first ODE is a SL problem, which we have solved before. It has eigenvalues and eigenfunc-
tions: λ0 = 0 with φ0(x) = 1 and λn =

(
nπ
L

)2
with φn = cos

(
nπx
L

)
, n = 1, 2, ...

The second ODE has the solution:

Gn(y) = c1 cosh
(nπ
L

(H − y)
)

+ c2 sinh
(nπ
L

(H − y)
)
.

The insulated BC G′n(H) = 0 gives:

G′n(y) = −c1
nπ

L
sinh

(nπ
L

(H − y)
)
− c2

nπ

L
cosh

(nπ
L

(H − y)
)
,



so G′n(H) = −c2 nπL = 0 or c2 = 0. Thus, Gn(y) = c1 cosh
(
nπ
L (H − y)

)
. The special case,

λ0 = 0 with G′0(H) = 0, gives the solution G0(y) = 1.
The superposition principle gives:

u(x, y) = A0 +

∞∑
n=1

An cos
(nπx
L

)
cosh

(nπ
L

(H − y)
)
.

The bottom BC gives

u(x, 0) = A0 +

∞∑
n=1

An cos
(nπx
L

)
cosh

(nπ
L

(H)
)

= f(x) =

{
0, x > L

2

1, x < L
2 .

Once again we use orthogonality to show that the Fourier coefficients are

A0 =
1

L

∫ L

0
f(x) dx =

1

L

∫ L/2

0
1 dx =

1

2
.

and ∫ L

0
f(x) cos

(mπx
L

)
dx =

∞∑
n=1

An cosh

(
nπH

L

)∫ L

0
cos
(nπx
L

)
cos
(mπx

L

)
dx,

or

An =
2

L cosh
(
nπH
L

) ∫ L/2

0
cos
(nπx
L

)
dx =

2

L cosh
(
nπH
L

) L
nπ

sin

(
nπL

2L

)
=

2 sin
(
nπ
2

)
nπ cosh

(
nπH
L

)
The solution becomes:

u(x, y =
1

2
+

∞∑
n=1

2 sin
(
nπ
2

)
nπ cosh

(
nπH
L

) cos
(nπx
L

)
cosh

(nπ
L

(H − y)
)
.

2.5.2 Consider Laplace’s equation:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < L, 0 < y < H,

with the flux boundary conditions:

∂u

∂x
(0, y) = 0,

∂u

∂x
(L, y) = 0,

∂u

∂y
(x, 0) = 0,

∂u

∂y
(x,H) = f(x).

a. (2pts) The solvability conditions says that the net heat flow through the boundary must be
zero in order for a steady state to exist. As 3 sides of the rectangle are insulated, the net flow
through the last side must also be zero, so

∫ L
0 f(x) dx = 0.

b. (10pts) Assume u(x, y) = φ(x)G(y), and as before, we get the two ODEs

φ′′(x) + λφ(x) = 0, φ′(0) = 0, φ′(L) = 0

G′′(y)− λG(y) = 0, G′(0) = 0.



For the first ODE is the SL problem and has been solved before. It has eigenvalues and
eigenfunctions: λ0 = 0 with φ0(x) = 1 and λn =

(
nπ
L

)2
with φn = cos

(
nπx
L

)
, n = 1, 2, ...

For the second problem, we get the solution:

Gn(y) = c1 cosh
(nπy
L

)
+ c2 sinh

(nπy
L

)
.

It is easy to see that the BC G′n(0) = 0 implies that c2 = 0. Thus, we have:

Gn(y) = c1 cosh
(nπy
L

)
.

The special case, λ0 = 0 with G′0(0) = 0, gives the solution G0(y) = 1.
The superposition principle gives the general solution:

u(x, y) = A0 +

∞∑
n=1

An cos
(nπx
L

)
cosh

(nπy
L

)
.

We check the flux BC at the top.

∂u

∂y
(x,H) =

∞∑
n=1

An cos
(nπx
L

) nπ
L

sinh

(
nπH

L

)
= f(x).

The solvability condition from Part a states:∫ L

0
f(x) dx = 0 =

∞∑
n=1

An
nπ

L
sinh

(
nπH

L

)∫ L

0
cos
(nπx
L

)
dx,

which holds because
∫ L
0 cos

(
nπx
L

)
dx = 0.

We use orthogonality to find the Fourier coefficients:∫ L

0
f(x) cos

(mπx
L

)
dx =

∞∑
n=1

An
nπ

L
sinh

(
nπH

L

)∫ L

0
cos
(nπx
L

)
cos
(mπx

L

)
dx.

From the orthogonality of the cosine functions:

An =
2

nπ sinh
(
nπH
L

) ∫ L

0
f(x) cos

(nπx
L

)
dx.

c. (3pts) Consider the time-dependent heat equation ∂u
∂t = k∇2u, where the IC is u(x, y, 0) =

g(x, y). We integrate over the region and see that the rate of change of heat energy is∫ H

0

∫ L

0

∂u

∂t
dx dy = k

∫ H

0

∫ L

0
∇2u dx dy = k

[∫ H

0

∫ L

0

∂2u

∂x2
dx dy +

∫ H

0

∫ L

0

∂2u

∂y2
dx dy

]
.

Integrating the second partials give the conditions on the boundaries, which all integrate to
zero, so

k

[∫ H

0

(
∂u

∂x
(L, y)− ∂u

∂x
(0, y)

)
dy +

∫ L

0

(
∂u

∂y
(x,H)− ∂u

∂y
(x, 0)

)
dx

]
= k

∫ L

0
f(x) dx = 0.



It follows that the rate of change of heat is zero, so the heat in the region is conserved or
constant. That is: ∫ H

0

∫ L

0
u(x, y, t) dx dy = C.

So the steady-state temperature distribution contains the same heat as the initial distribution:∫ H

0

∫ L

0
limt→∞u(x, y, t) dx dy =

∫ H

0

∫ L

0
u(x, y) dx dy =

∫ H

0

∫ L

0
u(x, y, 0) dx dy = C.

However,∫ H

0

∫ L

0
u(x, y) dx dy =

∫ H

0

∫ L

0

(
A0 +

∞∑
n=1

An cos
(nπx
L

)
cosh

(nπy
L

))
dx dy,

=

∫ H

0

∫ L

0
A0 dx dy +

∫ H

0

(
An cosh

(nπy
L

)[
sin
(nπx
L

) L

nπ

]L
0

)
dy,

=

∫ H

0

∫ L

0
A0 dx dy = HLA0.

It follows that

A0 =
1

HL

∫ H

0

∫ L

0
u(x, y, 0) dx dy =

1

HL

∫ H

0

∫ L

0
g(x, y) dx dy,

the average of the IC.

2.5.6 (8pts) b. Consider Laplace’s equation:

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0, 0 < r < a, 0 < θ < π.

with the BCs (insulated on the x-axis):

∂u

∂r
(r, 0) = 0,

∂u

∂r
(r, π) = 0, 0 ≤ r ≤ a, u(a, θ) = g(θ), 0 ≤ θ ≤ π.

Assume u(r, θ) = φ(θ)G(r), then separation of variables gives:

θ

r

∂

∂r

(
r
∂G

∂r

)
+

1

r2
φ′′G = 0 or − φ′′

φ
=

r

G

∂

∂r

(
r
∂G

∂r

)
= λ.

This gives the Sturm-Liouville problem:

φ′′ + λφ = 0, φ′(0) = 0, φ′(π) = 0,

and the ODE in r

rG′′ +G′ − 1

r
λG = 0.

As we have seen before, the Sturm-Liouville problem has eigenvalues and eigenfunctions:

λ0 = 0 with φ0(θ) = 1,



and
λn = n2 with φn(θ) = cos(nθ), n = 1, 2, ...

For λ0 = 0, the solution to the equation, r2G′′ + rG′ = 0 is

G0(r) = c1 + c2 ln(r),

while for λn = n2, we have shown the solution to be:

Gn(r) = c1r
n + c2r

−n.

In both cases, the boundedness at r = 0 implies that c2 = 0.
The superposition principle gives the general solution:

u(r, θ) = a0 +

∞∑
n=1

anr
n cos(nθ).

The BC gives:

u(a, θ) = a0 +
∞∑
n=1

ana
n cos(nθ) = g(θ).

Using orthogonality, we obtain the Fourier coefficients:

a0 =
1

π

∫ π

0
g(θ) dθ,

and

an =
2

πan

∫ π

0
g(θ) cos(nθ) dθ.

2.5.8 (12pts) b. Consider Laplace’s equation on an annular region:

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0, a < r < b, −π < θ < π.

with the BCs, including implicit ones,

∂u

∂r
(a, θ) = 0, u(b, θ) = g(θ), u(r,−π) = u(r, π),

∂u

∂θ
(r,−π) =

∂u

∂θ
(r, π).

Assume u(r, θ) = φ(θ)G(r), then separation of variables gives:

r

G

∂

∂r

(
r
∂G

∂r

)
= − 1

φ

d2φ

dθ2
= λ.

In θ, we obtain the periodic Sturm-Liouville problem:

φ′′ + λφ = 0, φ(−π) = φ(π), φ′(−π) = φ′(π).

The second ODE is Cauchy’s equation:

r
d

dr

(
r
dG

dr

)
− λG = 0, G′(a) = 0.



As we have seen before, the Sturm-Liouville problem has eigenvalues and eigenfunctions:

λ0 = 0 with φ0(θ) = 1,

and
λn = n2 with φn(θ) = an cos(nθ) + bn sin(nθ), n = 1, 2, ...

For λ0 = 0, the solution to the equation, r2G′′ + rG′ = 0 is

G0(r) = c1 + c2 ln(r),

while for λn = n2, we have shown the solution to Cauchy’s equation to be:

Gn(r) = c1r
n + c2r

−n.

From the boundary condition, G′(a) = 0, we see

G′0(r) =
c2
r
, so G′0(a) =

c2
a

= 0.

Thus, c2 = 0. Also,

G′n(r) = nc1r
n−1 − nc2r−n−1, so G′n(a) = nc1a

n−1 − nc2a−n−1 = 0.

It follows that c2 = c1a
2n for n = 1, 2, ..., so

G(r) = c1
(
rn + a2nr−n

)
.

The superposition principle gives the general solution:

u(r, θ) = A0 +
∞∑
n=1

(
rn + a2nr−n

)
(An cos(nθ) +Bn sin(nθ)) .

The BC at r = b gives

u(b, θ) = A0 +
∞∑
n=1

(
bn + a2nb−n

)
(An cos(nθ) +Bn sin(nθ)) = g(θ).

We use orthogonality to obtain the Fourier coefficients:

A0 =
1

2π

∫ π

−π
g(θ) dθ,

and

An
(
bn + a2nb−n

)
=

1

π

∫ π

−π
g(θ) cos(nθ) dθ,

and

Bn
(
bn + a2nb−n

)
=

1

π

∫ π

−π
g(θ) sin(nθ) dθ.

The solution can be written:

u(r, θ) =
1

2π

∫ π

−π
g(θ)dθ

+
∞∑
n=1

(
rn + a2nr−n

bn + a2nb−n

)
1

π

[∫ π

−π
g(θ) cos(nθ)dθ · cos(nθ) +

∫ π

−π
g(θ) sin(nθ)dθ · sin(nθ)

]
.



2.5.10 (5pts) Consider Poisson’s equation ∇2u = g(x) with the boundary condition, u = f(x).
Assume the solution is not unique. Then there is a u and v, which both satisfy the Poisson’s
equation and the boundary conditions, i.e.,

∇2u = g(x), with u = f(x), and ∇2v = g(x), with v = f(x).

Define w = u−v, so∇2w = ∇2u−∇2v = g(x)−g(x) = 0. Similarly, w = u−v = f(x)−f(x) = 0
on the boundary. It follows that w is a solution of the Laplace equation. The maximum principle
then gives 0 ≤ w ≤ 0 or w = 0, which implies u = v. Therefore the solution is unique.

2.5.15 (10pts) b. Consider Laplace’s equation on a semi-infinite strip:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x <∞, 0 < y < H,

with the BCs:

u(x, 0) = 0, u(x,H) = 0, u(0, y) = f(y), u(x, y) bounded for x→∞.

Assume u(x, y) = h(x)φ(y), then separation of variables gives the SL problem:

φ′′ + λφ = 0, φ(0) = 0, φ(H) = 0,

and the ODE in x:
h′′ − λh = 0.

We have often solved this SL problem, and we obtain the eigenvalues and eigenfunctions:

λn =
(nπ
H

)2
and φn = sin

(nπy
H

)
, n = 1, 2, ...

The general solution for the second problem is

h(x) = c1e
(nπxH ) + c2e

(−nπxH ).

Since this solution must be bounded, c1 = 0, hence,

h(x) = c2e
−(nπxH )

The superposition principle gives the general solution

u(x, y) =
∞∑
n=1

An sin
(nπy
H

)
e−(nπxH ).

The left BC gives

u(0, y) =

∞∑
n=1

An sin
(nπy
H

)
= f(y).

The Fourier coefficients are readily found with

An =
2

H

∫ H

0
f(y) sin

(nπy
H

)
dy.



Bonus: Graphs for WeBWorK Problems 5 and 6. Students only need to include one appropriate
surface graph for either problem, and the numbers on the graphs will vary based on different
numbers from WeBWorK. However the basic shapes should be the same.

WeBWorK Problem 5. (7pts) Laplace’s equation with zero (Dirichlet) boundary conditions
along the y-edges, insulated at x = 0, and a tent function at x = L (where L varies and height
of tent varies). Below shows a 3D surface and the heat map in the plane.
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WeBWorK Problem 6. (8pts) Laplace’s equation with zero (Dirichlet) boundary conditions
along the vertical axis, insulated along x = 0, and a step function at r = a (where a varies and
height of the step varies). Below shows a 3D surface and the heat map in the plane.
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Below is the MatLab code for generating the figures above for WW Problem 6. The key to
creating the polar surface is line 33, using the MatLab function pol2cart.

1 format compact;
2 a = 5;
3 H = pi/2;
4 NptsR=151; % number of x pts
5 NptsTH=151; % number of t pts
6 Nf=150; % number of Fourier terms
7 r=linspace(0,a,NptsR);



8 t=linspace(0,H,NptsTH);
9 [R,TH]=ndgrid(r,t);

10

11 fs=8;
12 figure(1)
13 clf
14

15 b=zeros(1,Nf);
16 U=zeros(NptsTH,NptsR);
17

18 for n=1:Nf
19 if (mod(n,4)==1)
20 b(n)=2.23754/((2*n-1)*5ˆ(2*n-1)); % Fourier coefficients
21 elseif (mod(n,4)==2)
22 b(n)=-13.0413/((2*n-1)*5ˆ(2*n-1)); % Fourier coefficients
23 elseif (mod(n,4)==3)
24 b(n)=13.0413/((2*n-1)*5ˆ(2*n-1)); % Fourier coefficients
25 else
26 b(n)=-2.23754/((2*n-1)*5ˆ(2*n-1)); % Fourier coefficients
27 end
28 Un=b(n)*(R.ˆ(2*n-1)).*cos((2*n-1)*TH); % Temperature(n)
29 U=U+Un;
30 end
31

32 set(gca,'FontSize',[fs]);
33 [R,TH] = pol2cart(TH,R);
34 surf(R,TH,U);
35 shading interp
36 colormap(jet)
37 fontlabs = 'Times New Roman';
38 xlabel('$x$','Fontsize',fs,'FontName',fontlabs,'interpreter','latex');
39 ylabel('$y$','Fontsize',fs,'FontName',fontlabs,'interpreter','latex');
40 zlabel('$u(x,y)$','Fontsize',fs,'FontName',fontlabs,'interpreter','latex');
41 %axis tight
42 colorbar
43 view([40 20])
44 print -depsc WW6 a.eps
45

46 figure(2)
47 clf
48

49 set(gca,'FontSize',[fs]);
50 surf(R,TH,U);
51 shading interp
52 colormap(jet)
53 view([0 90]) %create 2D color map of temperature
54 xlabel('x','Fontsize',fs); ylabel('y','Fontsize',fs); ...

zlabel('u(x,y)','Fontsize',fs);axis tight
55 colorbar
56 set(gca,'FontSize',[fs]);
57

58 print -depsc WW6 b.eps


