Spring Homework 3 - Solutions Math 531

2.4.1 Consider the PDE

ou 0%u ou ou
— =k ith BCs —(0,t) = —(L,t) =0, t¢>0.
ot 0z b i 81'( ) 8m( =0, t>
This is the heat equation with insulated BCs. Let u(x,t) = ¢(x)h(t), then by separation of

variables ¢ph’ = k¢"h, so
h/ /!
v
kh ¢

The resulting Sturm-Liouville problem is

#"+AXp=0 with ¢(0)=0 and ¢'(L)=0.

This problem can be shown to have eigenvalue \g = 0 with eigenfunction ¢o(x) = 1 and

eigenvalues A, = ”2752 with eigenfunctions ¢, (x) = cos ("—zx) The time varying problem has

hn(t) = cpeFn*™*t/L*  This gives

kEn‘m

2_2
Up(x,t) = Ape” L2 * cos (LZ:E) , n=12 ..

The superposition principle gives

e kn27x2
u(z,t) = Ao + Z Ape 12 * cos <n—zm) .
n=1

We demonstrated that there were no eigenvalues A < 0. The Fourier coefficients are

Aozi/OLf(m)dac and An:z/OLf(x)cos (sz> dx.

a. (8pts)Consider the initial condition:
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The Fourier coefficients are:

_2 [sin(nm) — sin(5)] = = sin (5)

2 L nwx 2 L . /nrx L
A, =— cos (—) dr = ——sin (—)
L L/2 L L nm L L/2 nm

The superposition principle gives the solution:

I 2 _n2y?
u(x,t) = 3 — sin (@) e 2 " cos (?) .




c¢) (7pts) Consider the initial condition:

4
s

Ag = E/OL (—2 sin (%)) dr = %cos (l—x) j = ;[COS(?T) —cos(0)] =
and
L T nwr L T
A, = z/o —2sin (f) cos (T) dr = _L/o sin (f) cos
= 7% /OL sin (z(l + n)x) + sin (—(1 - n)x) dx
rorm = L . 2rx 1 o\ |¥
A = —L/O sin (L) dr = ;cos (L) . =0.
Forn > 1,
2 [ T T L
A, = - :(1 I oS Z(l +n)xr + a—n cos Z(l n):n}o
_ % g in) (eos(m(1 +m)) = 1) + ! 5 (eos(m(1 =) - 1)}
= 2 (V) b s ()]

Thus, if n is odd, then A, = 0. If n is even, then

oo_2[=2 2] 8
" rll4n 1-n] wn2-1)

All even numbers are of the form Ag, = m, so it follows that

4 8 1 —an?x? 2nmw
u(x’t):_ﬂ+w7;4n2—1€ L2 " cos 7

2.4.2 (10pts) Consider the PDE:

U = U Ou
t — Wxx, ox
Use separation of variables u(z,t) = ¢(z)G(t), so

1.dG _ 1d%

).

B(e)C/ () = k¢ (@)G(t)  or == G =

(0,t) =0, u(L,t) =0, u(z,0) = f(x).



This gives the ODE in ¢t as < = —kAG, which has the solution:
G(t) = ce Mt
The Sturm-Liouville problem is
"+ Xp=0 with BCs ¢'(0) =0 and ¢(L)=

Case i: Suppose A = —a? < 0. This solution will grow in time because of the form of G(t),
contradicting one of the assumptions. Alternately,

o(z) = ¢ cosh(ax) 4 cg sinh(ax).

Since ¢/(0) = 0, co = 0. The other BC gives ¢(L) = ¢1 cosh(aL) = 0, so ¢; = 0, leaving only
the trivial solution.

Case ii: Suppose that A = 0, then ¢(x) = ¢y + 2. The first BC ¢/(0) = ¢; = 0. The other BC
gives ¢(L) = co = 0, so again there is only the trivial solution.

Case iii: Suppose that A = o2 > 0, then
d(x) = c1 cos(ax) + cosin(ax).

Since ¢/(0) =0, co = 0. The other BC gives
&(L) = crcos(al) =0 or al =

It follows that we have eigenvalues and eigenfunctions:

2
AFW and ¢n(:ﬂ)zcos<(2n;£)m:>, n=12,..

By the superposition principle, the solution is:

((en=1)m)* 1)7r) 2 — 1
S (0

The initial condition is

u(z,0) ZA cos 1) e

Multiply by the m!* eigenfunction and integrate 0 to L, so

L (2m — 1) 7x (2n — 1) 7z (2m — 1) 7x
/0 f(z) cos a7 dex = Z A, / cos cos dx

2L 2L
L
Am <2> )

from the orthogonality of the eigenfunctions (or computing the integrals m # n). It follows

that the Fourier coeflicients are:
2 [ on —1
— L/o () cos (HQL)de‘




2.5.1 (10pts) d. Consider the Laplace’s equation:

Pu
2 = — _— =
Viu = 92 + 12 0
The BCs are:
ou
u(0,y) = g(y), u(L,y) =0, a—y(x,O) =0, u(z,H) = 0.

Assume u(z,y) = h(z)p(y), so

" neoN or h'(z) _ _¢/,(y) _
W (@)o(y) + h(z)¢"(y) =0 e O

This leads to an ODE in x:
h"(z) — Ah(x) = 0, h(L) = 0.
and the Sturm-Liouville problem in y

Consider 3 cases: i. A = —a? < 0, so ¢(y) = c1 cosh(ay) + casinh(ay). Since ¢'(0) = 0, we
have ¢ = 0. Then ¢(H) = ¢ cosh(aH) = 0 implies ¢; = 0, so only the trivial solution solves
this case.

ii. A =0, s0 ¢(y) = c1y + co. Since ¢'(0) = 0, we have ¢; = 0. Then ¢(H) = ¢ = 0 implies
ca = 0, so only the trivial solution solves this case.

iii. A =a? >0, so ¢(y) = c1cos(ay) + cosin(ay). Since ¢’'(0) = 0, we have ca = 0. Then
¢(H) = c; cos(aH) = 0 implies we have eigenvalues and eigenfunctions:

(n —1/2)%x? (n—1/2)my
)\n:T, (Z)n:COS T y n:1,2,...

The first ODE becomes, h”(z) — A\ h(z) = 0, or

= oo (22270 oo (25—

Since h(L) = 0, it is easy to see that
h(L) = ¢1 cosh(0) =0 or c1=0.
Thus,

h(z) = casinh ((”_;/Q)W(L - x)) .

The product solution is

IR (ST IR CESTCL R,



Thus the principle of superposition leads to the general solution:

Z A, cos < 32)”) sinh <(” _}1[/2)”@ - x)>

The left edge BC gives:

ZA cos< n+11q/2)7ry> sinh <(71_II;2)7TL) = 9(y).

Multiplying by ¢.,(y) and integrating y € [0, H], we obtain:

/OH 9(W)Pm(y) dy = iAn sinh <(”_1H{2)7TL> /OH (0o ()

n=1

By orthogonality,
H
_ 0, m #n,
/0 Dn(Y)dm(y) dy = { H/2, m=mn

we obtain the Fourier coefficients:

2 H (n—1/2)my
A, = / g(y) cos <> dy n=1,2,..
H sinh (7@_11{,2)7@) 0 ) H

2.5.1 (10pts) g. Consider Laplace’s equation

2, __
Vau a2 " oy 0
The BCs are
ou B ou B 0 x> % ou B
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Assume u(z,y) = ¢(x)G(y), and we obtain the two ODEs as before,

¢" +Ap(x) = 0, ¢'(0) =0, ¢'(L) =0
G"(y) —AG(y) = 0, G'(H)=0

The first ODE is a SL problem, which we have solved before. It has eigenvalues and eigenfunc-
tions: A9 = 0 with ¢g(xz) =1 and A, = (”—) with ¢, = cos (“22), n=1,2,...
The second ODE has the solution:

Gn(y) = c1 cosh (nj

7 (H — y)) + cg sinh (n—g(H - y)) )

The insulated BC GJ,(H) = 0 gives:

G (y) = —clmsmh <nLTr(H —y)) — cg— cosh

; 7o (T

L(H—y)),



so GL(H) = =™ = 0 or ¢ = 0. Thus, Gn(y) = c¢1cosh (%E(H —y)). The special case,

Ao = 0 with G{(H) = 0, gives the solution Gy(y) = 1.
0

The superposition principle gives:

u(z,y) = Ao + ;An cos (?) cosh (%(H — y)) .
The bottom BC gives
e L
u(z,0) = Ag + ;An cos (ﬂ;j) cosh (%(H)) — f(x) = { (3 ;”<>§

Once again we use orthogonality to show that the Fourier coefficients are

1 (L 1 (L2 1

and
L M > nmH L nwx mmnx
/0 f(zx) cos <T) d:c:nz::lAncosh <L>/0 cos (T) COS( T )dx,
or
2 L/2 nwx 2 L nmL
A, = ——— —)dr = ————F—5~—sin | ——
Lcosh(”zH)/o (L) = feo ) o o (57)
- 2 sin (%)
N mrcosh(%)

The solution becomes:

1 = 2sin (—”)
u(z,y = 3 + ngl —— (iﬂT) cos ( 7 ) cosh (T(H - y))

2.5.2 Consider Laplace’s equation:

0*u  0%u

with the flux boundary conditions:
ou ou ou ou
—(0,y) =0, —(L,y) =0, —(z,0) =0, —(z,H) = :
“2(0,1) (L) So(@.0) 5o H) = (@)
a. (2pts) The solvability conditions says that the net heat flow through the boundary must be
zero in order for a steady state to exist. As 3 sides of the rectangle are insulated, the net flow

through the last side must also be zero, so fOL f(z)dx = 0.

b. (10pts) Assume u(z,y) = ¢(z)G(y), and as before, we get the two ODEs
) = 0, ¢'(0) =0, ¢'(L)=0

¢" () + Ap(a
G'(0) = 0.

G"(y) - A\G(y) = 0,



For the first ODE is the SL problem and has been solved before. It has eigenvalues and
eigenfunctions: \g = 0 with ¢p(x) =1 and \,, = ("—”) with ¢, = cos (”—zm) ,n=12,..

For the second problem, we get the solution:
nmw ) nmw
Gr(y) = c1 cosh (Ty) + c9sinh (Ty) .
It is easy to see that the BC G),(0) = 0 implies that c; = 0. Thus, we have:

Gn(y) = c1 cosh (?) .

The special case, Ao = 0 with G{,(0) = 0, gives the solution Gy(y) = 1.
The superposition principle gives the general solution:

u(z,y) = Ao + i A,, cos (?) cosh (?) )
n=1

We check the flux BC at the top.

H) = ij:lAn cos (?) %smh <n7rLH> = f(x).

The solvability condition from Part a states:

/OLf(x) ac—O—iAnmnh(m;H)/o cos(?)dm,

which holds because fo oS (”” ) dx = 0.
We use orthogonality to find the Fourier coefficients:

/f cos ) ZA <”LH>/O cos(?ﬁos(?)dx.

From the orthogonality of the cosine functions:
nmw
Ap= ————— / cos( )d x.
" oo sinh ( ””H J@ L

c. (3pts) Consider the time-dependent heat equation % = kV?2u, where the IC is u(z,y,0) =

g(z,y). We integrate over the region and see that the rate of change of heat energy is

H Lau )
/O/Omdxdy— / / Viudrdy =k [/ / 8x2dﬂvdy+/ / a2 da;dy]

Integrating the second partials give the conditions on the boundaries, which all integrate to
Z€ro, SO

[ (Gt - Son) as [ (S - 2e0) w] =k [ 1



It follows that the rate of change of heat is zero, so the heat in the region is conserved or

constant. That is:
H L
/ / u(z,y,t)dedy = C.
o Jo

So the steady-state temperature distribution contains the same heat as the initial distribution:

H L H L H L
/ / limyyoou(z, y,t) de dy = / / u(z,y)dedy = / / u(z,y,0)dedy = C.
0o Jo o Jo o Jo

However,

H L H L o0
nmwx nmy
u(z,y)doedy = / / Ao + Ay cos (—— ) cosh (—=) | dxdy,
/0 /0 (@) o Jo \7° Z ( L ) ( L )
H nmwy - /nmx\ L L
= / / Aodxdy—i-/o (A cosh (T) [sm (T) m]o dy,
= / / Agdxdy = HLA.

1 H L 1 H L
A —_ ———— —_ ———
0 HL/O /O u(z,y,0)dx dy HL/O /0 g(z,y) dx dy,

the average of the IC.

It follows that

2.5.6 (8pts) b. Consider Laplace’s equation:

10 (0 102
Vgu:<r8:f>+r2601;:0’ O<’I"<CL, 0< <.

with the BCs (insulated on the z-axis):

gz(r,())zo, g:f(r,ﬂ)zo, 0<r<a, u(a,0) = g(0), 0<0<m.

Assume u(r,8) = ¢(0)G(r), then separation of variables gives:

00 (0G\ 1. o o [ 0G\
7‘61"<8>+T2¢G_0 or E—Ga T —— =\

This gives the Sturm-Liouville problem:
¢"+Xp=0,  ¢'(0)=0, ¢'(m) =0,

and the ODE in r ]
rG" + G — =\G = 0.
r

As we have seen before, the Sturm-Liouville problem has eigenvalues and eigenfunctions:

)\0 =0 with ¢0(9) =



and
Ay =n? with ¢,(0) =cos(nf), n=1,2,..

For \¢g = 0, the solution to the equation, r’G” +rG’ =0 is
Go(r) = c1 + coIn(r),

while for A\, = n?, we have shown the solution to be:
Gn(r) =cr"™ + cor ™.

In both cases, the boundedness at r = 0 implies that cy = 0.
The superposition principle gives the general solution:

u(r,0) = ag + Z anr" cos(nb).

n=1
The BC gives:
u(a,0) = ag + Z ana” cos(nf) = g(0).

n=1

Using orthogonality, we obtain the Fourier coefficients:

aw=1 [ ot6)as
0

s

and 5 -
anp, =— [ g(0)cos(nb) db.
0

Ta™

2.5.8 (12pts) b. Consider Laplace’s equation on an annular region:

1 2
Vzu:<r?>+2(;;;:0, a<r<hb, —T<f<T.
T T

with the BCs, including implicit ones,

ou ou ou
or

Assume u(r,0) = ¢p(0)G(r), then separation of variables gives:

r 0 ( 0G 1d%¢
Gor (a) = g =
In 0, we obtain the periodic Sturm-Liouville problem:

¢"+Ap=0,  d(-m)=¢(r),  ¢(-7m)=4¢(m)
The second ODE is Cauchy’s equation:
d < dG

_— p— P / pr—
- rdr> AG=0, G'(a)=0.

—(a,0) =0, u(b,0) = g(0), u(r, —m) = u(r,m), %(T, —m) = %(7‘, ).



As we have seen before, the Sturm-Liouville problem has eigenvalues and eigenfunctions:
M =0 with ¢o(8) =

and
Ao =n? with  ¢,(0) = a, cos(nf) + b, sin(nh), n=1,2,..

For \g = 0, the solution to the equation, r2G” + rG’ =0 is

Go(?“) =c1 +Co 111(7“),

2 we have shown the solution to Cauchy’s equation to be:

while for A\, = n
Gn(r) =cr™ + cor ™.

From the boundary condition, G'(a) = 0, we see

(6] Co
Gor)=—, o Gola)=—=0.
Thus, co = 0. Also,
G (r) = neyr™™ — negr™ L so Gl (a)=nca" ! —nega™ " = 0.
It follows that ¢y = ¢1a®™ for n =1,2, ..., so

G(r)=c (" + aQ"T_") .

The superposition principle gives the general solution:
=Ap+ Z "+ o ™) (A cos(nf) + By sin(nf)) .
The BC at r = b gives

u(b,0) = Ag+ > _ (0" +a®b™") (A, cos(nb) + By sin(nf)) = g(6).

n=1

We use orthogonality to obtain the Fourier coefficients:

1 ™
Ao = %/_ng o,

and L
A, (V" + a7 = = / g(6) cos(nb) db,
m —T

and s
B, (b" +a*b") = / g(0) sin(n@) do.
T

—T

The solution can be written:

i / " g(0)do

2n,.—n m

+ Z (7’ taTr > % [/ﬂ g(0) cos(nd)do - cos(nb) +/ g(0) sin(nd)do - sin(nb) | .

bn+a2nb n o o



2.5.10 (5pts) Consider Poisson’s equation V?u = g(x) with the boundary condition, u = f(x).
Assume the solution is not unique. Then there is a u and v, which both satisfy the Poisson’s
equation and the boundary conditions, i.e.,

Viu = g(x), with u= f(z), and Vi =g(z), with v= f(z).

Define w = u—v, so V2w = V2u—V?2v = g(x)—g(x) = 0. Similarly, w = u—v = f(z)—f(z) =0
on the boundary. It follows that w is a solution of the Laplace equation. The maximum principle
then gives 0 < w < 0 or w = 0, which implies © = v. Therefore the solution is unique.

2.5.15 (10pts) b. Consider Laplace’s equation on a semi-infinite strip:

Pu

v2u=w+ay2_o, 0< < oo, 0<y<AH,

with the BCs:
u(z,0) =0, u(z,H) =0, u(0,y) = f(y), u(z,y) bounded for x — oo.
Assume u(x,y) = h(z)é(y), then separation of variables gives the SL problem:
¢"+Xp=0,  $(0)=0,  $(H)=0,

and the ODE in z:
h" — \h = 0.

We have often solved this SL problem, and we obtain the eigenvalues and eigenfunctions:

2
Ap = (%) and ¢n = sin (%) , n=12, ..

The general solution for the second problem is

nr nwx )

h(z) = cle<T) + 026(_ H

Since this solution must be bounded, ¢; = 0, hence,

nwm)

h(zx) = 0267( H

The superposition principle gives the general solution

N e (MTYN (nme
u(x,y)—;Ansm(H)e ("),

The left BC gives
. /nT
u(0,y) = ZA” sin <?y) = f(y).

n=1

The Fourier coefficients are readily found with

A, = é/OH f(y)sin (n—:ﬁ) dy.



Bonus: Graphs for WeBWorK Problems 5 and 6. Students only need to include one appropriate
surface graph for either problem, and the numbers on the graphs will vary based on different
numbers from WeBWorK. However the basic shapes should be the same.

WeBWorK Problem 5. (7pts) Laplace’s equation with zero (Dirichlet) boundary conditions
along the y-edges, insulated at 2 = 0, and a tent function at x = L (where L varies and height
of tent varies). Below shows a 3D surface and the heat map in the plane.

WeBWorK Problem 6. (8pts) Laplace’s equation with zero (Dirichlet) boundary conditions
along the vertical axis, insulated along x = 0, and a step function at r = a (where a varies and
height of the step varies). Below shows a 3D surface and the heat map in the plane.

5 = 7

Below is the MatLab code for generating the figures above for WW Problem 6. The key to
creating the polar surface is line 33, using the MatLab function pol2cart.

format compact;

a = 5;

H = pi/2;

NptsR=151; % number of x pts
NptsTH=151; number of t pts

Nf=150; number of Fourier terms
r=linspace (0, a,NptsR);

o

o

N O U e W N =




10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58

t=1linspace (0, H,NptsTH);
[R, TH]=ndgrid(r,t);

fs=8;
figure (1)
clf

b=zeros (1,Nf);
U=zeros (NptsTH, NptsR) ;

for n=1:Nf
if (mod(n,4)==1)
b(n)=2.23754/((2*n-1)*x5" (2*n-1)) ; % Fourier coefficients
elseif (mod(n,4)==2)
b(n)=-13.0413/((2*n-1)*5" (2*n-1)); % Fourier coefficients
elseif (mod(n,4)==3)
b(n)=13.0413/((2*n-1)*5" (2*n-1)); % Fourier coefficients

else

b(n)=-2.23754/ ((2*n-1)*x5" (2*n-1)); % Fourier coefficients
end
Un=b (n) * (R.” (2+*n-1)) .xcos ((2«n-1) *xTH) ; % Temperature (n)
U=U+Un;

end

set (gca, 'FontSize', [fs]);

[R,TH] = pol2cart (TH,R);

surf (R, TH,U) ;

shading interp

colormap (jet)

fontlabs = "'Times New Roman';

xlabel ('$x$', 'Fontsize', fs, 'FontName', fontlabs, 'interpreter', 'latex');
ylabel ('Sy$', 'Fontsize', fs, 'FontName', fontlabs, 'interpreter', 'latex');
zlabel ('Su(x,y)$"', 'Fontsize', fs, 'FontName', fontlabs, 'interpreter', 'latex"');
%axis tight

colorbar

view ([40 201])

print -depsc WW6_a.eps

figure (2)
clf

set (gca, 'FontSize', [fs]);
surf (R, TH,U) ;
shading interp
colormap (jet)
view ([0 9071) %$create 2D color map of temperature
xlabel ('x', 'Fontsize',fs); ylabel('y', 'Fontsize',fs);
zlabel ('u(x,vy)"', 'Fontsize', fs);axis tight
colorbar
set (gca, 'FontSize', [fs]);

print -depsc WW6_-b.eps




