
Spring Homework 2 Solutions Math 531

1.5.22 (5pts) The text gives us (1.5.25) as:
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where if x = x(u, v, w), y = y(u, v, w), and z = z(u, v, w), and r ≡ xi+yj+zk. If hu = |∂r/∂u|,
etc., then in cylindrical coordinates: x = r cos θ, y = r sin θ, z = z, and u = r, v = θ, w = z.
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It follows that
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Thus, we have
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2.2.4 a. (2pts) Assume that L is a linear operator, and suppose L(u) = f . If up is a particular
solution with L(up) = f and if u1 and u2 are homogeneous solutions, so L(u1) = L(u2) = 0.
Then consider

L(up + c1u1 + c2u2) = L(up) + c1L(u1) + c2L(u2) = f + 0 + 0 = f.

which implies that up + c1u1 + c2u2 is another particular solution.

b. (2pts) Assume that up1 and up2 are particular solutions, such that L(up1) = f1 and L(up2) =
f2. Let u = up1 + up2 , then

L(u) = L(up1 + up2) = L(up1) + L(up2) = f1 + f2.

It follows that u = up1 + up2 is a particular solution for f1 + f2.
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Let u(x, t) = φ(x)G(t), then
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Dividing this equation by φ(x)G(t) gives
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where the left hand side depends on t and the right hand side depends on x, so is constant.
This yields two ODEs
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Dividing this equation by φ(x)G(y) and rearranging gives
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where the left hand side depends on x and the right hand side depends on y, so is constant.
This yields two ODEs
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Dividing this equation by c2φ(x)G(t) gives
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2.3.8 Consider the PDE:
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a. (5pts) The equation for equilibrium ue(x) is
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The characteristic equation is λ2 − α
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The BC ue(0) = c1 = 0. The other BC ue(L) = c2 sinh
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= 0 implies c2 = 0. It follows
that the equilibrium solution is

ue(x) ≡ 0.

b. (10pts) Assume an initial condition u(x, 0) = f(x). We use separation of variables u(x.t) =
φ(x)G(t), then the PDE becomes
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We divide by kGφ and put the term with α on the left side, then
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The solution of the t equation is:

G(t) = c1e
−(λk+α)t.

The Sturm-Liouville problem is

φ′′ + λφ = 0 with φ(0) = 0 and φ(L) = 0.

We have previously shown that this problem only has nontrivial solutions for λ > 0. We obtain
the eigenvalues and eigenfunctions:
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Initial conditions provide

f(x) = u(x, 0) =
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We use the orthogonality of the eigenfunction to obtain the Fourier coefficients:

cn =
2

L

∫ L

0
f(x) sin

(nπx
L

)
dx.

For large time, limt→∞ e
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Thus u(x, t)→ 0 (u(x, t) will converge to the only equilibrium 0 we found in (a)).

WeBWorK Problems

5. (3pts) This one-dimensional rod has heat generated the entire length of the rod along with
flux conditions at each boundary. In order to have an equilibrium, the flux at the right end
needs β to be chosen such that it equal the value at the left end minus the integral of the heat
source generated throughout the rod. The heat generated in the rod is the constant in the
equation times the length of the rod.

6. (3pts) This one-dimensional rod has no heat sources in the rod. For there to be an equilibrium,
we simply need the fluxes at each end to be the same, so that the heat entering on the left
matches the heat leaving on the right.

7. (3pts) This one-dimensional rod has both ends insulated. For an equilibrium to occur, then
the net amount of heat generated in the rod must be zero. It follows that β must be selected so
that the integral of the nonhomogeneous function (the term following the heat diffusion term)
over the length of the rod must be zero. This prevents any build up of heat in the rod over
time.


