1. (5pts) Consider the heat equation given by the PDE:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}},
$$

with initial and boundary conditions:

$$
u(x, 0)=f(x), \quad u(0, t)=A, \quad \text { and } \quad u(10, t)=B .
$$

a. Let $u(x, t)=v(x, t)+u_{e}(x)$, where $u_{e}(x)$ solves the equilibrium solution to the PDE and the nonhomogeneous boundary conditions. Find $u_{e}(x)$. (Heat Equation Slides 10-12)
b. Show that $v(x, t)$ satisfies the PDE with homogeneous boundary conditions. What is the initial condition for this PDE in $v(x, t)$ ?
2. (6pts) The Laplacian in Cartesian coordinates is given by:

$$
\nabla^{2} u(x, y)=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

In polar coordinates we have:

$$
x=r \cos (\theta) \quad \text { and } \quad y=r \sin (\theta) .
$$

Use the chain rule to show that the Laplacian in polar coordinates satisfies:

$$
\nabla^{2} u(x, y)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} .
$$

Hint: Use the chain and product rules carefully to find:

$$
u_{r}, \quad u_{r r}, \quad \text { and } \quad u_{\theta}, \quad u_{\theta \theta},
$$

then combine $u_{r r}+\frac{u_{\theta \theta}}{r^{2}}$ and using $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$ and information on $u_{r}$ to obtain this Laplacian in polar coordinates. (See Heat 3D Slide 11)
3. (5pts) Consider the PDE given by:

$$
\frac{\partial u}{\partial t}=\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right) .
$$

What ordinary differential equations are implied by the method of separation of variables? (Separable Slides 6-8)

