10.3.1. Show that the Fourier transform is a linear operator; that is, show that
(a) $\mathcal{F}\left[c_{1} f(x)+c_{2} g(x)\right]=c_{1} F(\omega)+c_{2} G(\omega)$
(b) $\mathcal{F}[f(x) g(x)] \neq F(\omega) G(\omega)$
10.3.5. If $F(\omega)$ is the Fourier transform of $f(x)$, show that the inverse Fourier transform of $e^{i \omega \beta} F(\omega)$ is $f(x-\beta)$. This result is known as the shift theorem for Fourier transforms.
10.4.1. Using Green's formula, show that

$$
\mathcal{F}\left[\frac{d^{2} f}{d x^{2}}\right]=-\omega^{2} F(\omega)+\left.\frac{e^{i \omega x}}{2 \pi}\left(\frac{d f}{d x}-i \omega f\right)\right|_{-\infty} ^{\infty}
$$

$20 \quad$ 10.4.3. ${ }^{*}$ (a) Solve the diffusion equation with convection:
10

$$
\begin{gathered}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+c \frac{\partial u}{\partial x}-\infty<x<\infty \\
u(x, 0)=f(x) .
\end{gathered}
$$

[Hint: Use the convolution theorem and the shift theorem (see Exercise 10.4.5).]
(b) Consider the initial condition to be $\delta(x)$. Sketch the corresponding

10 $u(x, t)$ for various values of $t>0$. Comment on the significance of the convection term $c \partial u / \partial x$.

## Computer Problem 3 - Fourier Integral

Consider the function

$$
f(x)=\left\{\begin{array}{cc}
0, & x<0 \\
\pi e^{-x}, & x>0
\end{array}\right.
$$

The Fourier integral formula is given by

$$
f(x)=\int_{0}^{\infty}[A(\omega) \cos (\omega x)+B(\omega) \sin (\omega x)] d \omega
$$

1. Find the Fourier integral coefficients $A(\omega)$ and $B(\omega)$. Give the Fourier integral representation for $f(x)$.
2. Determine what the Fourier integral converges to for all values of $x$.
3. The truncated Fourier integral formula is given by

$$
f(x) \approx \int_{0}^{a}[A(\omega) \cos (\omega x)+B(\omega) \sin (\omega x)] d \omega
$$

where $a$ represents the truncated wave numbers. Graph the original function and the Fourier integral representation for $a=5,10,50$, and 100 . Show the graph for $x \in$ $[-10,10]$.

