1. a. (2pts) We have $y_{1}=e^{t}$, so $y_{1}^{\prime}=e^{t}$ and $y_{1}^{\prime \prime}=e^{t}$. It follows that $y_{1}^{\prime \prime}-y_{1}=e^{t}-e^{t}=0$. Similarly, $y_{2}=e^{-t}$ with $y_{2}^{\prime}=-e^{-t}$ and $y_{2}^{\prime \prime}=e^{-t}$. Thus, it follows that $y_{2}^{\prime \prime}-y_{2}=e^{-t}-e^{-t}=0$. Thus, $y_{1}(t)$ and $y_{2}(t)$ are solutions to the differential equation.

Take a linear combination: $c_{1} e^{t}+c_{2} e^{-t}=0$, which is equivalent to $c_{1}=-c_{2} e^{-2 t}$. With the decaying exponential, this equality only holds for $c_{1}=c_{2}=0$. Thus, the two solutions are linearly independent. (Also, can be shown using the Wronskian.)
b. (2pts) We have $y_{1}(t)=\sinh (t)$, so $y_{1}^{\prime}=\cosh (t)$ and $y_{1}^{\prime \prime}=\sinh (t)$. It follows that $y_{1}^{\prime \prime}-y_{1}=$ $\sinh (t)-\sinh (t)=0$. Similarly, $y_{2}(t)=\sinh (1-t)$, so $y_{2}^{\prime}=-\cosh (1-t)$ and $y_{2}^{\prime \prime}=\sinh (1-t)$. It follows that $y_{2}^{\prime \prime}-y_{2}=\sinh (1-t)-\sinh (1-t)=0$. Thus, $y_{1}(t)$ and $y_{2}(t)$ are solutions to the differential equation.

To show that this pair forms another linearly independent set, consider $c_{1} \sinh (t)+c_{2} \sinh (1-$ $t)=0$. We could apply the Wronskian, but it is easier to take advantage of the fact that this must hold for all t. At $t=0$, we have $c_{2} \sinh (1)=0$, so $c_{2}=0$. At $t=1$, we have $c_{1} \sinh (1)=0$, so $c_{1}=0$. Thus, $c_{1}=c_{2}=0$, and the two solutions are linearly independent.
2. a. (2pts) For the differential equation:

$$
y^{\prime \prime}-2 a y^{\prime}+\left(a^{2}+b^{2}\right) y=0,
$$

the characteristic equation satisfies:

$$
\lambda^{2}-2 a \lambda+\left(a^{2}+b^{2}\right)=0 \quad \text { or } \quad \lambda=a \pm i b .
$$

This gives the general solution

$$
y(t)=c_{1} e^{a t} \cos (b t)+c_{2} e^{a t} \sin (b t)=e^{a t}\left(c_{1} \cos (b t)+c_{2} \sin (b t)\right) .
$$

b. (3pts) The initial condition, $y(0)=y_{0}$, gives $y(0)=y_{0}=c_{1}$. Differentiating (product rule), we have

$$
y^{\prime}(t)=e^{a t}\left(-c_{1} b \sin (b t)+c_{2} b \cos (b t)\right)+a e^{a t}\left(c_{1} \cos (b t)+c_{2} \sin (b t)\right) .
$$

With $y^{\prime}(0)=z_{0}$, we obtain:

$$
z_{0}=c_{2} b+a c_{1}=b c_{2}+a y_{0} \quad \text { or } \quad c_{2}=\frac{\left(z_{0}-a y_{0}\right)}{b} .
$$

It follows that the solution is:

$$
y(t)=e^{a t}\left(y_{0} \cos (b t)+\frac{\left(z_{0}-a y_{0}\right)}{b} \sin (b t)\right) .
$$

c. (6pts) We consider the ODE with boundary conditions:

$$
y(0)=A \quad \text { and } \quad y\left(x_{0}\right)=B .
$$

From above we see that $c_{1}=A$, so

$$
y(t)=e^{a t}\left(A \cos (b t)+c_{2} \sin (b t)\right) .
$$

The other BC implies that

$$
y\left(x_{0}\right)=B=e^{a x_{0}}\left(A \cos \left(b x_{0}\right)+c_{2} \sin \left(b x_{0}\right)\right) .
$$

Provided $\sin \left(b x_{0}\right) \neq 0$ or equivalently, $x_{0} \neq \frac{n \pi}{b}, n=1,2, \ldots$, we can uniquely solve for c_{2} with

$$
c_{2}=\frac{B-A e^{a x_{0}} \cos \left(b x_{0}\right)}{e^{a x_{0}} \sin \left(b x_{0}\right)},
$$

which gives the unique solution:

$$
y(t)=e^{a t}\left(A \cos (b t)+\frac{\left(B-A e^{a x_{0}} \cos \left(b x_{0}\right)\right)}{e^{a x_{0}} \sin \left(b x_{0}\right)} \sin (b t)\right) .
$$

ii) If $\sin \left(b x_{0}\right)=0$ or $x_{0}=\frac{(n) \pi}{b}$, then there are infinitely many solutions provided $B-$ $A e^{a x_{0}} \cos \left(b x_{0}\right)=0$, which is equivalent to

$$
B=A e^{a n \pi / b} \cos (n \pi), \quad n=1,2, \ldots
$$

iii) If $\sin \left(b x_{0}\right)=0$ or $x_{0}=\frac{(n) \pi}{b}$, then there is no solution if

$$
B \neq A e^{a n \pi / b} \cos (n \pi), \quad n=1,2, \ldots
$$

