Spring 2023 Math 531 Take-Home Exam 1 Solutions

1. a. Consider the Sturm-Liouville problem for = € (0, 3):
w4+ =0, u'(0)=0, u3)=0.

We consider 3 cases:

Case (i): If A = 0, then u(z) = c1z + c2. One BC gives «/(0) = ¢; = 0. The other BC gives
u(3) = ¢o = 0, which gives only the trivial solution.

Case (ii): If A = —a? < 0, then u(x) = ¢1 cosh(ax)+cg sinh(ax). One BC gives u/(0) = coa = 0
or cg = 0. The other BC gives u(3) = ¢ cosh(3a) = 0 or ¢; = 0, which gives only the trivial
solution.

Case (iii): If A = a2 > 0, then u(z) = ¢; cos(az) + ca sin(ax). One BC gives u/(0) = coa = 0 or
ca = 0. The other BC gives u(3) = ¢; cos(3a) = 0, so for non-trivial solutions,

_ @n=Dm
Qy = e n=12..

It follows that the eigenvalues and corresponding eigenfunctions are:

2n — 1)%72 2n—1
/\n:(n%)w and un(w):cos<(nﬁ)7m>, n=12,..

b. The eigenfunctions from Part a form a complete orthogonal set, so we represent the function:

> on —1
f(m):{ g: ?§i§5137 by f(:c)Nz::lAnCOS<( n - )7Tac>

Orthogonality gives:

/ng(a:) cos <(2”_61)”> da :/132(308 <(2”_61)”> dr = A, /OBCOSQ <(2”_61)”> da

It follows that

o §/13cos <(2n_61)m5> dr — (2n§1)ﬂ Sin<(2n—61)7rx>

c. This Fourier series converges to 2 at © = 2 (pt. of cont.). It converges to 1 at z = 1 (midpoint

of jump). It converges to 2 at z = —35 (even extension).

d. Below we show the graph of the approximation of f(x) using n = 5, 10, 20 terms in the
Fourier series for « € [—5,5]. In black, the graph shows the points of convergence of the Fourier
series on this interval.



Fourier series, n =5
Fourier series, n = 10
Fourier series, n = 20
Fourier convergence
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T

The absolute error between the 20 term Fourier series and the f(z) at various values of z
satisfies:

T Fourier series Absolue error
0.1 0.03531 0.03531
0.95 0.3363 0.3363

2 2.05992 0.05992
2.75 1.8922 0.1078

The maximum value of the function with 20 terms is 2.35868, which occurs at x = 2.85367, so
the maximum absolute error is 0.35868, which is roughly 9% of the jump.

o

% Periodic Fourier cosine series TH1 s23

NptsX=1001; % number of x pts
x = linspace (-5, 5,NptsX);

© 0 N O U R W N =

fl = zeros (1l,NptsX);

f2 = zeros (1,NptsX);

£f3 = zeros (1l,NptsX);

for n=1:5

b(n)=8/((2*n-1) *pi) * (sin((n-1/2)*pi) - sin((n-1/2)*pi/3));

10 fn=b (n) *cos ((n-1/2) xpi*x/3); % Fourier function (n)
11 fl=fl1+fn;
12 end
13 for n=1:10
14 b(n)=8/((2+xn-1)*pi)* (sin((n-1/2)*pi) - sin((n-1/2)*pi/3));
15 fn=b(n) *cos ((n-1/2) xpixx/3); % Fourier function (n)
16 f2=f2+fn;
17 end
18 for n=1:20
19 b(n)=8/((2*n-1) *xpi) * (sin((n-1/2)*pi) - sin((n-1/2)*pi/3));
20 fn=b (n) *cos ((n-1/2) *pi*x/3); % Fourier function (n)
21 £f3=£f3+fn;

22 end




23

24 plot(x,fl, 'b-', 'LineWidth',1.5);

25 hold on

26 plot(x,f2,'r-', 'LineWidth',1.5);

27 plot(x,£f3, 'm-', 'LineWidth',1.5);

28 plot([-1 1],[0,0], ' 'k-", " 'LineWidth',1.5);

29 plot ([l 3],[2 2],'k-", 'LineWidth',1.5);

30 plot([-3 -11,[2 2],'k-"',"'LineWidth',1.5);

31 plot ([-5 -3],[-2 -2],'k-",'LineWidth"',1.5);

32 plot([3 5],[-2 -2],'k-"',"'LineWidth',1.5);

33 plot([-1 11,[1 1], 'ko', 'MarkerSize',5, 'MarkerFaceColor','k");
34 plot ([-3 3],[0 0], 'ko', '"MarkerSize',5, 'MarkerFaceColor', 'k'");

35 grid;
36 h = legend('Fourier series, $n = 5$', 'Fourier series, $n = 10$',...
37 'Fourier series, $n = 20$', 'Fourier convergence', 'Location', 'south');

38 set (h, "Interpreter', 'latex"')

39 h.FontSize = 10;

40 x1im([-5,5]);

41 ylim([-2.5 2.5]);

42 xlabel ('$x$', 'FontSize',12, 'interpreter', 'latex');

43 ylabel ('$u$', 'FontSize',12, 'interpreter', 'latex');

44 set (gca, 'FontSize',12); % Axis tick font size
45 print -depsc thl_1d_-s23.eps

2. a. The string problem satisfies the nonhomogeneous partial differential equation:
utt+2kut202um—g, t>0 and O<z<1,

with £ > 0 (k < ¢m) and g > 0.The boundary conditions are u(0,t) = 0 and u(1,¢) = 0. The
equilibrium solution satisfies:

Auly —g=0, up(0) =0 and wug(l)=0.

Since uy = %, we integrate twice to give

ug(z) = 2’%:62 +c1x + co.

The boundary conditions give ug(0) = 0 = ¢z and ug(1) = 0 = 5% +c¢1 or ¢1 = —5%. It follows
that the equilibrium solution is
_ 9 2
up(r) = —5(z° — x).

b. We let w(z,t) = u(z,t) — ug(z), then w; = u;, wy = Uy, and Wye = Uze — uy,. However,
uy, = %, so when substituted into the string problem, we have

wy + 2kwy = ? <wa:x + C%) —g= C2w:mc-

This gives a damped linear homogeneous wave equation in w with the homogeneous boundary
conditions:

w(0,t) =0 and w(l,t) =0.

The initial conditions are:

w(z,0) = u(x,0) —up(x) =0 and wy(z,0) = 1.




We solve the equation in w using separation of variables, so w(z,t) = ¢(x)h(t) and

h/l _|_ 2k,h/ ¢/l
— 2 — —
oh" + koh! = 2¢"h  or —oh o .

The Sturm-Liouville problem is
" +Xp=0 with  #(0)=0 and ¢(1)=
This is a standard SL problem with Dirichlet BCs, giving the eigenvalues and associated eigen-

vectors:

Ay = n?r? and ¢n(x) = sin(nmz).

The t-equation is
B! 4 2kh!, + (n*n*c*)h, = 0,

which has the characteristic equation:
r? + 2kr + n’n?c® = 0, so r=—k*£iwy,

where w2 = n?r2c? — k% > 0. This gives the general solution:
ho(t) = e A, cos(wnt) + By, sin(wpyt)].

Since the initial position is zero, h,(0) = 0 and A, = 0. We now apply the Superposition
Principle and obtain:

Z Bpe " sin(wyt) sin(nrx).

The velocity is:
Z Bpe F—ksin(wpt) + wy cos(wpt)] sin(nrz),

so the initial velocity is
oo
w(z,0) =1= Zann sin(nmx).
n=0

Orthogonality of the eigenfunctions gives us the Fourier coefficients:

2 (! 2 2
B, = wn/o sin(nrx)dr = o [1 — cos(nm)] = —— 1—(—=1)"]
It follows that
Z Bpe M sin(w,t) sin(nrz) + %(xz — ),
where 5
B, = [1—(-1)"] and  w, = Vn?r2c? — k2.
nTwWy,

With the exponential decay in the Fourier series, we have

tli)rgo u(z,t) =ug(x) = @(ac — ).



3. Given the heat equation:

)
%:w%, O<z<2 0<y<3, t>0.

with boundary conditions:

ou ou
- — A(3 — (2 — 42
Bx(o’y’t) (3—-1v), ax( Y t) =y,

ou ou

B t) = —_— =
8y(:E,O,) 0, and ay(x,?),t) 0,

we begin with the solvability condition:

%Vu-nds:o,

which for this problem becomes:

2 3 0 0
/ uy(z,0,t)dz + / uz(2,y,t)dr + / uy(z,3,t)dr + / uz(0,y,t)dz = 0.
0 0 2 3

Inserting the B.C.’s, we find that:

2 3 0 0 y3
/Oda;+/ y2dy—|—/ Od:z:—i-/ AB—y)dy = =
0 0 2 3 3

This implies that A = 2.

For the steady-state problem we split the original problem into 2 problems, VZu; = 0 with
%(0, y) = A(3—vy) and VZuy = 0 with %(2, y) = y? and all other B.C.’s for each problem are
homogeneous (Neumann). As usual we start with separation of variables, ui(z,y) = h(x)o(y),

soh"¢p+he"” =0 or
h// "
ho_ 0\
h ¢

The SL problem is ¢” + ¢ = 0 with ¢/(0) = 0 = ¢'(3). We have solved this eigenvalue problem

before, and we obtained the eigenvalues and corresponding eigenfunctions:

n?n?

X =0 with ¢o(y) =1, and Ap =

with ¢, (y) = cos <@> :

3

The z-equation satisfies h” — #h =0 with h/(2) = 0, so we can write:

hn(x) = ¢1 cosh (n?ﬂ(? — x)) + ¢ sinh (%(2 - :):)) .

The B.C. implies that co = 0. For \g = 0, ho(z) = ¢1 + coz with hy’(2) = 0, implying that

co = 0. Combining these results with the Superposition Principle gives:

nm

ui(x,y) = Ao + iA” cos (%) cosh ( 3 (2— x)) .
n=1



From the nonhomogeneous B.C., we find the Fourier coefficients. We see that for A = 2:
Ouq (0,9) = 23 — y) iA nmw (nﬂ'y) - 2nm
— = —y)=— —cos | —— ) sinh | — | .
o Y Y "3 3 3

Taking advantage of orthogonality, we obtain:

2 3 3
—Anﬂ sinh [ 227 / cos? (@) dy = 2/ (3 —y) cos (@) dy.
3 3 ) ) 3 o 3

With Maple doing the integral on the right hand side and some algebra, we have:

36

A, =
n373 sinh

(QnTﬂ) ((_1) - 1) :

We now let ua(x,y) = h(x)é(y), and the SL problem is the same as for ui(x,y). We solve
h'" — @h = 0 with A'(0) = 0, so we can write:

nmx

hn(x) = ¢1 cosh (%) + ¢ sinh <T> )

The B.C. implies that co = 0. For \g = 0, ho(z) = ¢1 + cox with hy'(2) = 0, implying that
cg = 0. Combining these results with the Superposition Principle gives:

o
uz(x,y) = By + ZB” cos (?) cosh (nfga:) .
n=1

From the nonhomogeneous B.C., we find the Fourier coefficients. We see that:

ou > nmw nmw ) 2nm
a—;(Q, y) =y* = Z Bn? cos (Ty) sinh (3) .

Taking advantage of orthogonality, we obtain:

9 3
Bn@ sinh | 228 3 = / y? cos (Lﬂ'g/) dy.
3 3 )2 0 3

With Maple doing the integral on the right hand side and some algebra, we have:

PR
" n3m3sinh (%T’T) '

It remains to show the constants Ay and By, which depend on the initial conditions. We have:

3 2
/ / (AO —+ Bo)dl‘ dy = (AO + Bo)6,
0 0

/03/02u($,y)da?dy = /03/02$(3—y)da:dy: 332(3y;y2/2)

3
=0.
0

2
0




It follows that Ay + By = % Combining all these results gives:

*+Z

h (@) (((—1)" — 1) cosh (%(2 — x)) + 3(—1)" cosh (?)) cos (%) .

n373 sin

4. a. The steady-state temperature distribution of the semi-circular region is given by:

10 (o) 1ot

ror \_ or r2 002 7
which has the B.C.’s g—Z(r, 0) =0, u(r,m) =0, and u(2,6) = m — 6. There is the implicit B.C.
that lim,_,q |u(r, #)| is bounded. Let u(r,0) = h(r)p(0), then Laplace’s equation gives:

¢d ( > et rrh? __¢"

rdr \ dr r2 or o )

The SL problem is:

" +Xp =0, ¢'(0)=0 and ¢(r)=
If A =0, then ¢(0) = 160 + c2. The B.C. ¢’(0) =0 = ¢;. The B.C. ¢(7) = 0 = co, so this gives
the trivial solution, which implies that A = 0 is not an eigenvalue.

If A\ = —a? <0, then ¢(0) = c1 cosh(af) + casinh(af). The B.C. ¢’(0) = 0 = coa. The B.C.
¢(m) = 0 = ¢y cosh(an). Since cosh(am) > 0, ¢; = 0, which again gives only the trivial solution,
so A < 0 does not produce any eigenvalues.

If A = a? < 0, then ¢(f) = ¢ cos(af) + casin(af). The B.C. ¢’(0) = 0 = cza. The B.C.

¢(ﬂ) = 0 = ¢y cos(ar). For a nontrivial solution we need cos(am) = 0. It follows that a, =

2"2 Thus, the eigenvalues and corresponding eigenfunctions are:

n—1)2 n—
An = (241) with  ¢n(0) = cos <(221)9> .

The r-equation becomes:

(2n —1)2

2n —1)32
'r(rh’)/—74 h=0 or 7“2h"+7“h'—7( i )

1 h=0.

Try a solution h(r) = r?, and then this Cauchy-Euler equation has the auxiliary equation:

on —1)2 omn—1
22_<n4):& “© z:gnz)_

It follows that the general solution is:
hn(T) — ClT(2n_1)/2 + CQT‘_(Qn_l)/2.
The boundedness condition as  — 0 implies that co = 0.

The Superposition Principle gives:

Za pon=1)/ cos,((?”;”‘)).



It remains to satisfy the remaining B.C., u(2,0) = m — 6. Thus, we require

N~ genny2 (2n=DON
u(2,0) nz::la,ﬂ cos( 5 T —0.

By the orthogonality of the eigenfunctions, we have

a4, 22n=1/2 (g) - /Oﬂ(w — 9) cos (M) do.

The integral on the right is solved by Maple, and the Fourier coefficient is given by:

8(2—(271,—1)/2)
T@n? —dn+ 1)’

Ap —

so our solution is given by:

0 8(2—(272—1)/2)7,,(271—1)/2 (2n _ 1)9
u(r0) =3 m@n2 —dn+1) <—> ‘

n=1

b. Below is a colored heat map displaying the steady-state temperature distribution in this
region. You must include your program.

$semicircular heat distribution

NptsR = 51;
NptsT = 51;
Nf = 50;

r=1linspace (0,2, NptsR);
t=linspace (0, pi, NptsT);
[R, T]=meshgrid(r,t);
X=R.%*cos (T);

Y=R.*sin (T);

© 0 N O s W N =

= o= e e
w N = O

fs=8;
figure (101)
clf

== e e
I N TN

b=zeros (1,Nf);




18 U=zeros (NptsR,NptsT);
19
20 for n=1:Nf

21 b(n)=(8%2" (= (2*n-1)/2))/(pix (4*n"2-4%n+1)); % Fourier coefficients
22 Un=b (n) *R." ((2+*n-1) /2) .xcos ((2*xn-1)*T/2); % Temperature (n)

23 U=U+Un;

24 end

25
26 colormap jet;

27 surf (X,Y,U)

28 shading interp;

29 axis equal;

30 colorbar

31 view (-30,10);

32

33 print -depsc ss_semisl9_heata.eps % Color
34

35 figure (102)

36

37 surf (X,Y,U)

38 colormap jet;

39 shading interp;

40 axis equal;

41 colorbar

42 view (0, 90);

43

44 print -depsc ss_semisl9_heatb.eps

5. a. We are given the ODE:
6" — 040" +Xp=0,  $(0)=0, $(8)=0.
The Sturm-Liouville eigenvalue problem satisfies:

pd’] + g + Ao =0 or pod"” +p'd" 4+ qp + Ao = 0.

We convert the ODE above into a Sturm-Liouville eigenvalue problem by choosing a function
H(x) to multiply the equation above:

H¢" —04H¢' + XHop = 0.
It follows that p(x) = H(z) and p’ = H' = —0.4H. Thus,
p(x) = H(z)=e % ¢(z)=0, and o(z) =0

The SL problem satisfies:

d —0.4x d¢ —0.4x ;,
o <e dx>+)\e ¢ =0.

The characteristic polynomial is 72 —0.4r +\ = (r—0.2)2+X—0.04 = 0. The Rayleigh Quotient
readily shows that A > 0, as

—p(@)9(@)9" (@] + Jo (p(@)(¢'(2))* — a@)(¢(=))?) du

A= 8
Jo (6(z))?0(z)dx

>0

)




where ¢(0) = ¢(8) =0, p(z) = o(x) > 0, g(z) = 0, $?(x) > 0, and (¢'(x))? > 0.

If A\ =0, then ¢” — 0.4¢’ = 0, which has the general solution, ¢(x) = ¢ + c2e%4*, so #(0) =
c1+ ¢ = 0. The other BC gives ¢; 4+ cpe3? = 0, s0 ¢; = ¢ = 0, leaving only the trivial solution.

If A\ —0.04 = —a? < 0, then 7 = 0.2 £ «, which has the solution,
d(x) = €%2% (¢q cosh(ax) + casinh(ax)). The B.C. ¢(0) = ¢; = 0. The other B.C. gives
#(8) = coe!fsinh(8ar) = 0, which implies cg = 0, leaving only the trivial solution.

If A = 0.04, then r = 0.2, which has the solution, ¢(x) = €%2% (¢; + cax). The B.C. ¢(0) =
c1 = 0. The other B.C. gives ¢(8) = ca5e!0 = 0, which implies ¢y = 0, leaving only the trivial
solution.

If A\ —0.04 = a® >0, then » = 0.2 £ icv, which has the solution,
#(z) = %27 (¢c1 cos(ax) + casin(ax)). The B.C. ¢(0) = ¢; = 0. The other B.C. gives ¢(8) =

c2e!0sin(8a)) = 0, which has nontrivial solutions if o, = . It follows that the eigenvalues

8
and eigenfunctions are:

2
An = 0.04 + (%T) , with ¢, (z) = e*** sin (%) , n=1,23, ..

The orthogonality relation for this SL problem with eigenfunctions ¢, (x) and ¢, (z), m # n,
is:

8
/ ¢m($)¢n($)€_0'4x dx = 0.
0

b. A one-dimensional rod for heat conduction with convection is given by:

ou  0%*u ou
— =——-04—, O 8, t>0
ot~ 922 o TS D

with B.C.’s and 1.C.’s:
u(0,t) =0, wu(8,t)=0, and wu(z,0)= f(x).
From separation of variables with u(z,t) = ¢(x)h(t), we have:

L' " _0.40"
oh' = ¢"h —0.4¢'h or h:¢¢0¢:_)\'

This gives the t-equation with its solution:
h' +Xh =0, S0 h(t) = ce .
The z-equation and its B.C.’s are given by:
¢" —04¢' +Xp=0  with  ¢(0)=0 and ¢(8) =0,
which is the same Sturm-Liouville problem from Part a.

c. Having solved the t-equation and the SL problem in Parts a and b, we have the product
solution:

_ 2.2 . nnr
tn(z,1) = Ape~ 00447 72/64) 020 ) (7)

8



We apply the Superposition Principle to obtain the solution:

o

nmwx
u(a, ) = D7 Apem OV 01020 gy (T
n=1 8
The initial condition gives:
= nmx
u(z,0) = f(z) = Z Ape%% sin (T)

We use the orthogonality relationship to find the Fourier coefficients:

. fOS f(=) (60.2x sin (%x)) e M du = 1/8 f@)e™ " sin (@> -
. f08 (027 i (%I))z e—0.42 o 4 /o 8

6. a. The operator L is self-adjoint if

6
/0 [uL(v) —vL(u)]dz = 0.

Assume that the functions, u(z) and v(z), satisfy the B.C.’s, u(0) = 0, u”(0) = 0, u(6) = 0,
u”(6) =0, v(0) =0, v”(0) =0, v(6) =0, and v"(6) = 0. We integrate by parts:

6 6
/ (uv 7/ Uu””) dr — (uv mo_ Uu”/)}g _ / (U/’U mo_ v/u///) dz.
0 0

Since u(0) = wu(6) = v(0) = v(6) = 0 (fixed ends), the function evaluations vanish at the
endpoints. Integration by parts a second time gives:

6 6
_/0 (u/U///_,U/u///)dx:_ (UI’U”—’U/UH)‘g-F/O (u”v”—v”u”)dx:O,
because the last integral vanishes and we have the B.C.’s " (0) = «”(6) = v”(0) = v"(6) =0

(free force). This shows that L is self-adjoint.
b. From Part a, if L(¢p,) = Andm and L(dy) = Apdp, then

6

6 6
/ (6L () — bu L)) d = / A — Amndm) dz = (A — Arn) / G iz = 0,
0 0 0

which shows orthogonality of distinct eigenvalues. Suppose that A is a complex eigenvalue with
complex eigenfunction ¢, then L(¢) — A¢ = 0. Taking the complex conjugate, we have

L(¢) — A¢ = L(¢) — Ad = L(¢) — Ap =0,

so A is an eigenvalue and ¢ is its corresponding eigenfunction. However, the orthogonality
relationship gives:

6
(A—M/O dddz =0,

which since ¢¢p = |¢|> > 0 for an eigenfunction, implies that A — A = 0, so A is real, which
contradicts the assumption of A being complex.



From the expression related to the Rayleigh Quotient, we show that the eigenvalues are non-
negative:

P foﬁﬁbL[ﬁf)]dﬂﬁ_fD <dd( Zig_% Z?)"f'(gjfy)dm

IS ¢2dm 9 ¢2dx
do  d?¢ d?
el e
a 1S ¢2da 7
2
since the BCs give (gé ﬁ — % flif) ‘0 =0, (%) >0, and ¢? > 0. It follows that A > 0.

The SL problem with B.C.’s satisfies:

L(¢) ~A6=0¢" —A=0,  ¢(0)=0, 6"(0)=0, ¢(6)=0, and ¢"(6)=0.

4

The characteristic equation is r* — A = 0, so we consider the various cases of real A.

If A =0, then integrating 4 times gives:

crad 72

¢($)—T+T+63x+64

We have ¢(0) = ¢4 = 0 and ¢”(0) = ¢ = 0. Since ¢"(6) = 6¢; = 0, ¢; = 0. Finally,
¢(6) = 6¢c3 = 0 or c3 = 0, leaving only the trivial solution, so A = 0 is not an eigenvalue.

4

From above it follows that A must be positive, so assume A = a* > 0. The characteristic

equation satisfies:

it —at = (2 + ) (r? - a?) = (r+ia)(r —ia)(r +a)(r —a) = 0.

This gives the general solution:
¢(x) = ¢1 cosh(ax) + ¢g sinh(ax) + ¢3 cos(ax) + ¢4 sin(ax).
The BCs ¢(0) = 0 and ¢”(0) = 0 give:
c1+c3=0 and a2(01—03):0, so c¢1 =c3=0.
The BCs ¢(6) = 0 and ¢"(6) = 0 give:
casinh(6a) + cysin(6a) =0 and  a?(cysinh(6a) — ¢4 sin(6a)) = 0.

It follows that cg sinh(6cr) = 0 or c2 = 0 and ¢4 sin(6a) = 0, which leads to non-trivial solutions
if 6y, = nm, n = 1,2,... It follows that the eigenvalues and corresponding eigenfunctions are

given by:
nm nmwx

A = @ = (F)4 and ¢n(x) =sin (T) forn=1,2,...

The orthogonality relationship satisfies:




c. The displacement of a uniform thin beam in a medium that resists motion satisfies:

o*u 0%u ou
— = —— — 02— t .
1 2 0 - 0<x<6, t>0

with the B.C.’s:
w(0,t) =0, ugpe(0,8) =0, w(6,t) =0, wuy(6,t)=0.

and I.C.’s, u(z,0) = 0, and the initial velocity:

0, xz € (0,1),
21:("”’0) —{ 9 z € (1,2),
0, x € (2,6).

We use separation of variables with u(x,t) = ¢(x)h(t), so

nn " _ 2 /
QZ)””h:*QZ)(h”*O.Qh,) or ¢ :7h 0 h :)\
o) h
This gives the SL problem from Part b, $*) — A¢ = 0 with BCs ¢(0) = 0, ¢”(0) = 0, ¢(6) = 0,
¢"(6) = 0. which has the eigenvalues and eigenfunctions:

4
Ap=al = (%) with ¢n(x) = sin (—) , n=12 ..

The t-equation becomes:
hn" +0.2h," + Ahy =0,

which has the characteristic equation:

r2+0.2r+ )\, =0, ) r=—0.1++/0.01 — \,.

Since the smallest eigenvalue is A\; = (%)4 ~ 0.0752 > 0.01, we have 0.01 — A\, < 0, which
implies that r is complex. Thus, if we define w,, = /A, — 0.01, then we write the solution:

ho(t) = e %1 (A, cos(wnt) + Bpsin(w,t)), n=1,2,..
The Superposition Principle gives:

u(x,t) = i e Ol (An cos(wpt) + By, sin(w,ﬁ)) sin (%ﬂ) :

n=1

From the I.C., u(z,0) = 0, it follows that A, = 0. The velocity satisfies:

u(x,t) = i Bpe 01t (wn cos(wpt) — 0.1 sin(wnt)) sin (n%;x) :

n=1
The other I.C. gives:

%(m) = F(z) = i Bwy sin (Lgx) .

n=1



Multiplying by ¢, (), integrating from = = 0 to 6, and using orthogonality gives:

/06 F(z)sin (%aj) do — /06 B, sin? (ﬂ;) iz = 3B,

It follows that the Fourier coefficient is:

1 /¢ 2 [2
B, = 3on ), F(z)sin <%> dx = 3, /. sin (%) dx,
(o) 4( cos (%) — cos (%) )
= — coS = .
NTWy, 6 1 NTWy,

Thus, the solution to this problem is:

© 4 nwy\ _ nmw
u(w,t) = Z <COS( 6n)7Tw:OS( 3 ))eo.lt Sin(wnt) sin (%) 7

n=1
where w, = (%)4 —0.01.

d. With 50 terms in the series solution of u(x,t), the figure below shows the displacement of
the beam at times ¢t =0, 1, 2, 5, 10, and 20.
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Below is a surface plot for u(z,t) with « € [0,6] and ¢ € [0, 50].
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$format compact;

L = 6;

NptsX=151; number of x pts
NptsT=151; number of t pts

Nf=200; % number of Fourier terms
x=linspace (0, L, NptsX) ;

t=linspace (0,20, NptsT) ;

[X,T]l=meshgrid(x,t);

k = 0.2;

o
°
o
)

fs=8;
figure (1)
clf

b=zeros (1,Nf);
U=zeros (NptsT, NptsX);
for n=1:Nf
w(n) = sqgrt((n*pi/L)~4-0.01);
b(n) = (4x(cos(nxpi/L)-cos (2+«n*pi/L)))/ (nxpixw(n));
Un = b(n)*exp(—(k/2)*T) .*sin(w(n)*T) .xsin (n*pi*X/L);
U =0 + Un;
end
set (gca, 'FontSize', [fs]);
surf (X, T,U);
shading interp
colormap (jet)
fontlabs = 'Times New Roman';
xlabel ('$x$', 'Fontsize', fs, 'FontName', fontlabs, 'interpreter', 'latex');
ylabel ('$t$', "Fontsize', fs, '"FontName', fontlabs, 'interpreter', 'latex");
zlabel ('Su(x,t)s$"', 'Fontsize', fs, 'FontName', fontlabs, 'interpreter', 'latex"');
%axis tight

colorbar
view ([-=75 207)
set (gca, 'FontSize',12); % Axis tick font size

print -depsc beam_plots20.eps
figure (2)

xx=1linspace (0, 6,200);

Vl=zeros (1,200);

for n=1:Nf
Vn = b(n)xexp(—(k/2)*1)*xsin(w(n)*1).*sin(nxpixxx/L);
V1l = V1 + Vn;

end

V2=zeros (1,200);

for n=1:Nf
Vn = b(n)xexp (= (k/2)*2)xsin(w(n)*2) .*sin (nxpixxx/L);
V2 = V2 + Vn;

end

V5=zeros (1,200);

for n=1:Nf
Vn = b(n)xexp (= (k/2)*5)xsin(w(n)*5) .*sin (nxpixxx/L);
V5 = V5 + Vn;

end

V10=zeros (1,200);

for n=1:Nf
Vn = b(n)+exp(-(k/2)*10)*sin(w(n) *10) .*sin (n*xpi*xx/L);
V10 = V10 + Vn;

end
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V20=zeros (1,200);

for n=1:Nf
Vn = b(n)*exp (- (k/2)*20)*sin(w(n) *20) .*sin (n*xpi*xx/L) ;
V20 = V20 + Vn;

end

plot (xx,V1, '"b-", '"LinewWidth',1.5);

hold on

plot (xx,V2, 'm-"', "LineWidth',1.5);

plot (xx,V5, '"r=", "LinewWidth',1.5);

plot (xx,V10, 'k=", '"LineWidth',1.5);

plot (xx,v20,'-',"'color',[0,0.6,0], 'LineWidth',1.5);

grid;

h = legend ('St = 1$','st = 25','St = 58','St = 10S', ...
'St = 208", 'Location', 'northwest');

set (h, 'Interpreter', 'latex")

h.FontSize = 10;

x1im ([0, 6]);

ylim([-0.4,1.471);

set (gca, 'FontSize',12); % Axis tick font size

print —-depsc beam_plotbs20.eps




