1. a. Consider the Sturm-Liouville problem for $x \in(0,3)$:

$$
u^{\prime \prime}+\lambda u=0, \quad u^{\prime}(0)=0, \quad u(3)=0
$$

We consider 3 cases:
Case (i): If $\lambda=0$, then $u(x)=c_{1} x+c_{2}$. One BC gives $u^{\prime}(0)=c_{1}=0$. The other BC gives $u(3)=c_{2}=0$, which gives only the trivial solution.

Case (ii): If $\lambda=-\alpha^{2}<0$, then $u(x)=c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x)$. One BC gives $u^{\prime}(0)=c_{2} \alpha=0$ or $c_{2}=0$. The other BC gives $u(3)=c_{1} \cosh (3 \alpha)=0$ or $c_{1}=0$, which gives only the trivial solution.

Case (iii): If $\lambda=\alpha^{2}>0$, then $u(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)$. One BC gives $u^{\prime}(0)=c_{2} \alpha=0$ or $c_{2}=0$. The other BC gives $u(3)=c_{1} \cos (3 \alpha)=0$, so for non-trivial solutions, $\alpha_{n}=\frac{(2 n-1) \pi}{6}, n=1,2, \ldots$
It follows that the eigenvalues and corresponding eigenfunctions are:

$$
\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{36} \quad \text { and } \quad u_{n}(x)=\cos \left(\frac{(2 n-1) \pi x}{6}\right), \quad n=1,2, \ldots
$$

b. The eigenfunctions from Part a form a complete orthogonal set, so we represent the function:

$$
f(x)=\left\{\begin{array}{ll}
0, & 0 \leq x<1, \\
2, & 1 \leq x \leq 3 .
\end{array} \quad \text { by } \quad f(x) \sim \sum_{n=1}^{\infty} A_{n} \cos \left(\frac{(2 n-1) \pi x}{6}\right)\right.
$$

Orthogonality gives:

$$
\int_{0}^{3} f(x) \cos \left(\frac{(2 n-1) \pi x}{6}\right) d x=\int_{1}^{3} 2 \cos \left(\frac{(2 n-1) \pi x}{6}\right) d x=A_{n} \int_{0}^{3} \cos ^{2}\left(\frac{(2 n-1) \pi x}{6}\right) d x
$$

It follows that

$$
\begin{aligned}
A_{n} & =\frac{4}{3} \int_{1}^{3} \cos \left(\frac{(2 n-1) \pi x}{6}\right) d x=\left.\frac{8}{(2 n-1) \pi} \sin \left(\frac{(2 n-1) \pi x}{6}\right)\right|_{1} ^{3} \\
& =\frac{8}{(2 n-1) \pi}\left[\sin \left(\frac{(2 n-1) \pi x}{2}\right)-\sin \left(\frac{(2 n-1) \pi}{6}\right)\right] \\
& =\frac{8}{(2 n-1) \pi}\left[(-1)^{n+1}+\cos \left(\frac{\pi}{3}(n+1)\right)\right]
\end{aligned}
$$

c. This Fourier series converges to $\mathbf{2}$ at $x=2$ (pt. of cont.). It converges to $\mathbf{1}$ at $x=1$ (midpoint of jump). It converges to 2 at $x=-\frac{5}{2}$ (even extension).
d. Below we show the graph of the approximation of $f(x)$ using $n=5,10,20$ terms in the Fourier series for $x \in[-5,5]$. In black, the graph shows the points of convergence of the Fourier series on this interval.

The absolute error between the 20 term Fourier series and the $f(x)$ at various values of x satisfies:

x	Fourier series	Absolue error
0.1	0.03531	0.03531
0.95	0.3363	0.3363
2	2.05992	0.05992
2.75	1.8922	0.1078

The maximum value of the function with 20 terms is 2.35868 , which occurs at $x=2.85367$, so the maximum absolute error is 0.35868 , which is roughly 9% of the jump.

```
% Periodic Fourier cosine series TH1 s23
NptsX=1001; % number of x pts
x = linspace(-5,5,NptsX);
f1 = zeros(1,NptsX);
f2 = zeros(1,NptsX);
f3 = zeros(1,NptsX);
for n=1:5
    b}(\textrm{n})=8/((2*n-1)*pi)*(\operatorname{sin}((n-1/2)*pi) - sin((n-1/2)*pi/3))
    fn=b(n)*\operatorname{cos}((n-1/2)*pi*x/3); % Fourier function(n)
    f1=f1+fn;
end
for n=1:10
    b}(n)=8/((2*n-1)*pi)*(sin((n-1/2)*pi) - sin((n-1/2)*pi/3))
    fn=b(n)*\operatorname{cos}((n-1/2)*pi*x/3); % Fourier function(n)
    f2=f2+fn;
end
for n=1:20
    b}(\textrm{n})=8/((2*n-1)*pi)*(sin((n-1/2) *pi) - sin((n-1/2) *pi/3))
    fn=b(n)*\operatorname{cos}((n-1/2)*pi*x/3); % Fourier function(n)
    f3=f3+fn;
end
```

```
plot(x,f1,'b-', 'LineWidth',1.5);
hold on
plot(x,f2,'r-','LineWidth',1.5);
plot(x,f3,'m-','LineWidth',1.5);
plot([-1 1],[0,0],'k-','LineWidth',1.5);
plot([1 3],[2 2],'k-','LineWidth',1.5);
plot([-3 -1],[2 2],'k-','LineWidth',1.5);
plot([-5 -3],[-2 -2],'k-','LineWidth',1.5);
plot([3 5],[-2 -2],'k-','LineWidth',1.5);
plot([-1 1],[1 1],'ko','MarkerSize',5,'MarkerFaceColor','k');
plot([-3 3],[0 0],'ko','MarkerSize',5,'MarkerFaceColor','k');
grid;
h = legend('Fourier series, $n = 5$', 'Fourier series, $n = 10$',\ldots
    'Fourier series, $n = 20$','Fourier convergence', 'Location','south');
set(h,'Interpreter','latex')
h.FontSize = 10;
xlim([-5,5]);
ylim([-2.5 2.5]);
xlabel('$x$','FontSize',12,'interpreter','latex');
ylabel('$u$','FontSize',12,'interpreter','latex');
set(gca,'FontSize',12); % Axis tick font size
print -depsc th1_1d_s23.eps
```

2. a. The string problem satisfies the nonhomogeneous partial differential equation:

$$
u_{t t}+2 k u_{t}=c^{2} u_{x x}-g, \quad t>0 \quad \text { and } \quad 0<x<1,
$$

with $k>0(k \ll c \pi)$ and $g>0$. The boundary conditions are $u(0, t)=0$ and $u(1, t)=0$. The equilibrium solution satisfies:

$$
c^{2} u_{E}^{\prime \prime}-g=0, \quad u_{E}(0)=0 \quad \text { and } \quad u_{E}(1)=0 .
$$

Since $u_{E}^{\prime \prime}=\frac{g}{c^{2}}$, we integrate twice to give

$$
u_{E}(x)=\frac{g}{2 c^{2}} x^{2}+c_{1} x+c_{2} .
$$

The boundary conditions give $u_{E}(0)=0=c_{2}$ and $u_{E}(1)=0=\frac{g}{2 c^{2}}+c_{1}$ or $c_{1}=-\frac{g}{2 c^{2}}$. It follows that the equilibrium solution is

$$
u_{E}(x)=\frac{g}{2 c^{2}}\left(x^{2}-x\right) .
$$

b. We let $w(x, t)=u(x, t)-u_{E}(x)$, then $w_{t}=u_{t}, w_{t t}=u_{t t}$, and $w_{x x}=u_{x x}-u_{E}^{\prime \prime}$. However, $u_{E}^{\prime \prime}=\frac{g}{2 c^{2}}$, so when substituted into the string problem, we have

$$
w_{t t}+2 k w_{t}=c^{2}\left(w_{x x}+\frac{g}{c^{2}}\right)-g=c^{2} w_{x x}
$$

This gives a damped linear homogeneous wave equation in w with the homogeneous boundary conditions:

$$
w(0, t)=0 \quad \text { and } \quad w(1, t)=0 .
$$

The initial conditions are:

$$
w(x, 0)=u(x, 0)-u_{E}(x)=0 \quad \text { and } \quad w_{t}(x, 0)=1
$$

We solve the equation in w using separation of variables, so $w(x, t)=\phi(x) h(t)$ and

$$
\phi h^{\prime \prime}+k \phi h^{\prime}=c^{2} \phi^{\prime \prime} h \quad \text { or } \quad \frac{h^{\prime \prime}+2 k h^{\prime}}{c^{2} h}=\frac{\phi^{\prime \prime}}{\phi}=-\lambda .
$$

The Sturm-Liouville problem is

$$
\phi^{\prime \prime}+\lambda \phi=0 \quad \text { with } \quad \phi(0)=0 \quad \text { and } \quad \phi(1)=0 .
$$

This is a standard SL problem with Dirichlet BCs, giving the eigenvalues and associated eigenvectors:

$$
\lambda_{n}=n^{2} \pi^{2} \quad \text { and } \quad \phi_{n}(x)=\sin (n \pi x) .
$$

The t-equation is

$$
h_{n}^{\prime \prime}+2 k h_{n}^{\prime}+\left(n^{2} \pi^{2} c^{2}\right) h_{n}=0,
$$

which has the characteristic equation:

$$
r^{2}+2 k r+n^{2} \pi^{2} c^{2}=0, \quad \text { so } \quad r=-k \pm i \omega_{n},
$$

where $\omega_{n}^{2}=n^{2} \pi^{2} c^{2}-k^{2}>0$. This gives the general solution:

$$
h_{n}(t)=e^{-k t}\left[A_{n} \cos \left(\omega_{n} t\right)+B_{n} \sin \left(\omega_{n} t\right)\right] .
$$

Since the initial position is zero, $h_{n}(0)=0$ and $A_{n}=0$. We now apply the Superposition Principle and obtain:

$$
w(x, t)=\sum_{n=0}^{\infty} B_{n} e^{-k t} \sin \left(\omega_{n} t\right) \sin (n \pi x) .
$$

The velocity is:

$$
w_{t}(x, t)=\sum_{n=0}^{\infty} B_{n} e^{-k t}\left[-k \sin \left(\omega_{n} t\right)+\omega_{n} \cos \left(\omega_{n} t\right)\right] \sin (n \pi x),
$$

so the initial velocity is

$$
w_{t}(x, 0)=1=\sum_{n=0}^{\infty} B_{n} \omega_{n} \sin (n \pi x)
$$

Orthogonality of the eigenfunctions gives us the Fourier coefficients:

$$
B_{n}=\frac{2}{\omega_{n}} \int_{0}^{1} \sin (n \pi x) d x=\frac{2}{n \pi \omega_{n}}[1-\cos (n \pi)]=\frac{2}{n \pi \omega_{n}}\left[1-(-1)^{n}\right] .
$$

It follows that

$$
u(x, t)=\sum_{n=0}^{\infty} B_{n} e^{-k t} \sin \left(\omega_{n} t\right) \sin (n \pi x)+\frac{g}{2 c^{2}}\left(x^{2}-x\right),
$$

where

$$
B_{n}=\frac{2}{n \pi \omega_{n}}\left[1-(-1)^{n}\right] \quad \text { and } \quad \omega_{n}=\sqrt{n^{2} \pi^{2} c^{2}-k^{2}}
$$

With the exponential decay in the Fourier series, we have

$$
\lim _{t \rightarrow \infty} u(x, t)=u_{E}(x)=\frac{g}{2 c^{2}}\left(x^{2}-x\right) .
$$

3. Given the heat equation:

$$
\frac{\partial u}{\partial t}=k \nabla^{2} u, \quad 0<x<2, \quad 0<y<3, \quad t>0
$$

with boundary conditions:

$$
\frac{\partial u}{\partial x}(0, y, t)=A(3-y), \quad \frac{\partial u}{\partial x}(2, y, t)=y^{2}, \quad \frac{\partial u}{\partial y}(x, 0, t)=0, \quad \text { and } \quad \frac{\partial u}{\partial y}(x, 3, t)=0
$$

we begin with the solvability condition:

$$
\oint \nabla u \cdot \mathbf{n} d s=0
$$

which for this problem becomes:

$$
\int_{0}^{2} u_{y}(x, 0, t) d x+\int_{0}^{3} u_{x}(2, y, t) d x+\int_{2}^{0} u_{y}(x, 3, t) d x+\int_{3}^{0} u_{x}(0, y, t) d x=0
$$

Inserting the B.C.'s, we find that:

$$
\begin{aligned}
\int_{0}^{2} 0 d x+\int_{0}^{3} y^{2} d y+\int_{2}^{0} 0 d x+\int_{3}^{0} A(3-y) d y & =\left.\frac{y^{3}}{3}\right|_{0} ^{3}-\left.\left(3 A y-\frac{A y^{2}}{2}\right)\right|_{0} ^{3} \\
& =9-\left(9 A-\frac{9 A}{2}\right)=9-\frac{9 A}{2}=0
\end{aligned}
$$

This implies that $A=2$.
For the steady-state problem we split the original problem into 2 problems, $\nabla^{2} u_{1}=0$ with $\frac{\partial u_{1}}{\partial x}(0, y)=A(3-y)$ and $\nabla^{2} u_{2}=0$ with $\frac{\partial u_{2}}{\partial x}(2, y)=y^{2}$ and all other B.C.'s for each problem are homogeneous (Neumann). As usual we start with separation of variables, $u_{1}(x, y)=h(x) \phi(y)$, so $h^{\prime \prime} \phi+h \phi^{\prime \prime}=0$ or

$$
\frac{h^{\prime \prime}}{h}=-\frac{\phi^{\prime \prime}}{\phi}=\lambda .
$$

The SL problem is $\phi^{\prime \prime}+\lambda \phi=0$ with $\phi^{\prime}(0)=0=\phi^{\prime}(3)$. We have solved this eigenvalue problem before, and we obtained the eigenvalues and corresponding eigenfunctions:

$$
\lambda_{0}=0 \quad \text { with } \quad \phi_{0}(y)=1, \quad \text { and } \quad \lambda_{n}=\frac{n^{2} \pi^{2}}{9} \quad \text { with } \quad \phi_{n}(y)=\cos \left(\frac{n \pi y}{3}\right) .
$$

The x-equation satisfies $h^{\prime \prime}-\frac{n^{2} \pi^{2}}{9} h=0$ with $h^{\prime}(2)=0$, so we can write:

$$
h_{n}(x)=c_{1} \cosh \left(\frac{n \pi}{3}(2-x)\right)+c_{2} \sinh \left(\frac{n \pi}{3}(2-x)\right) .
$$

The B.C. implies that $c_{2}=0$. For $\lambda_{0}=0, h_{0}(x)=c_{1}+c_{2} x$ with $h_{0}{ }^{\prime}(2)=0$, implying that $c_{2}=0$. Combining these results with the Superposition Principle gives:

$$
u_{1}(x, y)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi y}{3}\right) \cosh \left(\frac{n \pi}{3}(2-x)\right)
$$

From the nonhomogeneous B.C., we find the Fourier coefficients. We see that for $A=2$:

$$
\frac{\partial u_{1}}{\partial x}(0, y)=2(3-y)=-\sum_{n=1}^{\infty} A_{n} \frac{n \pi}{3} \cos \left(\frac{n \pi y}{3}\right) \sinh \left(\frac{2 n \pi}{3}\right) .
$$

Taking advantage of orthogonality, we obtain:

$$
-A_{n} \frac{n \pi}{3} \sinh \left(\frac{2 n \pi}{3}\right) \int_{0}^{3} \cos ^{2}\left(\frac{n \pi y}{3}\right) d y=2 \int_{0}^{3}(3-y) \cos \left(\frac{n \pi y}{3}\right) d y
$$

With Maple doing the integral on the right hand side and some algebra, we have:

$$
A_{n}=\frac{36}{n^{3} \pi^{3} \sinh \left(\frac{2 n \pi}{3}\right)}\left((-1)^{n}-1\right) .
$$

We now let $u_{2}(x, y)=h(x) \phi(y)$, and the SL problem is the same as for $u_{1}(x, y)$. We solve $h^{\prime \prime}-\frac{n^{2} \pi^{2}}{9} h=0$ with $h^{\prime}(0)=0$, so we can write:

$$
h_{n}(x)=c_{1} \cosh \left(\frac{n \pi x}{3}\right)+c_{2} \sinh \left(\frac{n \pi x}{3}\right) .
$$

The B.C. implies that $c_{2}=0$. For $\lambda_{0}=0, h_{0}(x)=c_{1}+c_{2} x$ with $h_{0}{ }^{\prime}(2)=0$, implying that $c_{2}=0$. Combining these results with the Superposition Principle gives:

$$
u_{2}(x, y)=B_{0}+\sum_{n=1}^{\infty} B_{n} \cos \left(\frac{n \pi y}{3}\right) \cosh \left(\frac{n \pi x}{3}\right) .
$$

From the nonhomogeneous B.C., we find the Fourier coefficients. We see that:

$$
\frac{\partial u_{2}}{\partial x}(2, y)=y^{2}=\sum_{n=1}^{\infty} B_{n} \frac{n \pi}{3} \cos \left(\frac{n \pi y}{3}\right) \sinh \left(\frac{2 n \pi}{3}\right) .
$$

Taking advantage of orthogonality, we obtain:

$$
B_{n} \frac{n \pi}{3} \sinh \left(\frac{2 n \pi}{3}\right) \frac{3}{2}=\int_{0}^{3} y^{2} \cos \left(\frac{n \pi y}{3}\right) d y
$$

With Maple doing the integral on the right hand side and some algebra, we have:

$$
B_{n}=\frac{108(-1)^{n}}{n^{3} \pi^{3} \sinh \left(\frac{2 n \pi}{3}\right)} .
$$

It remains to show the constants A_{0} and B_{0}, which depend on the initial conditions. We have:

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{2}\left(A_{0}+B_{0}\right) d x d y & =\left(A_{0}+B_{0}\right) 6, \\
\int_{0}^{3} \int_{0}^{2} u(x, y) d x d y & =\int_{0}^{3} \int_{0}^{2} x(3-y) d x d y=\left.\left.\frac{x^{2}\left(3 y-y^{2} / 2\right)}{2}\right|_{0} ^{2}\right|_{0} ^{3}=9 .
\end{aligned}
$$

It follows that $A_{0}+B_{0}=\frac{3}{2}$. Combining all these results gives:

$$
u(x, y)=\frac{3}{2}+\sum_{n=1}^{\infty} \frac{36}{n^{3} \pi^{3} \sinh \left(\frac{2 n \pi}{3}\right)}\left(\left((-1)^{n}-1\right) \cosh \left(\frac{n \pi}{3}(2-x)\right)+3(-1)^{n} \cosh \left(\frac{n \pi x}{3}\right)\right) \cos \left(\frac{n \pi y}{3}\right) .
$$

4. a. The steady-state temperature distribution of the semi-circular region is given by:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0,
$$

which has the B.C.'s $\frac{\partial u}{\partial \theta}(r, 0)=0, u(r, \pi)=0$, and $u(2, \theta)=\pi-\theta$. There is the implicit B.C. that $\lim _{r \rightarrow 0}|u(r, \theta)|$ is bounded. Let $u(r, \theta)=h(r) \phi(\theta)$, then Laplace's equation gives:

$$
\frac{\phi}{r} \frac{d}{d r}\left(r \frac{d h}{d r}\right)+\frac{h \phi^{\prime \prime}}{r^{2}}=0 \quad \text { or } \quad \frac{r\left(r h^{\prime}\right)^{\prime}}{h}=-\frac{\phi^{\prime \prime}}{\phi}=\lambda .
$$

The SL problem is:

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \phi^{\prime}(0)=0 \quad \text { and } \quad \phi(\pi)=0 .
$$

If $\lambda=0$, then $\phi(\theta)=c_{1} \theta+c_{2}$. The B.C. $\phi^{\prime}(0)=0=c_{1}$. The B.C. $\phi(\pi)=0=c_{2}$, so this gives the trivial solution, which implies that $\lambda=0$ is not an eigenvalue.

If $\lambda=-\alpha^{2}<0$, then $\phi(\theta)=c_{1} \cosh (\alpha \theta)+c_{2} \sinh (\alpha \theta)$. The B.C. $\phi^{\prime}(0)=0=c_{2} \alpha$. The B.C. $\phi(\pi)=0=c_{1} \cosh (\alpha \pi)$. Since $\cosh (\alpha \pi)>0, c_{1}=0$, which again gives only the trivial solution, so $\lambda<0$ does not produce any eigenvalues.

If $\lambda=\alpha^{2}<0$, then $\phi(\theta)=c_{1} \cos (\alpha \theta)+c_{2} \sin (\alpha \theta)$. The B.C. $\phi^{\prime}(0)=0=c_{2} \alpha$. The B.C. $\phi(\pi)=0=c_{1} \cos (\alpha \pi)$. For a nontrivial solution we need $\cos (\alpha \pi)=0$. It follows that $\alpha_{n}=$ $\frac{2 n-1}{2}$. Thus, the eigenvalues and corresponding eigenfunctions are:

$$
\lambda_{n}=\frac{(2 n-1)^{2}}{4} \quad \text { with } \quad \phi_{n}(\theta)=\cos \left(\frac{(2 n-1) \theta}{2}\right) .
$$

The r-equation becomes:

$$
r\left(r h^{\prime}\right)^{\prime}-\frac{(2 n-1)^{2}}{4} h=0 \quad \text { or } \quad r^{2} h^{\prime \prime}+r h^{\prime}-\frac{(2 n-1)^{2}}{4} h=0 .
$$

Try a solution $h(r)=r^{z}$, and then this Cauchy-Euler equation has the auxiliary equation:

$$
z^{2}-\frac{(2 n-1)^{2}}{4}=0, \quad \text { so } \quad z= \pm \frac{(2 n-1)}{2}
$$

It follows that the general solution is:

$$
h_{n}(r)=c_{1} r^{(2 n-1) / 2}+c_{2} r^{-(2 n-1) / 2} .
$$

The boundedness condition as $r \rightarrow 0$ implies that $c_{2}=0$.
The Superposition Principle gives:

$$
u(r, \theta)=\sum_{n=1}^{\infty} a_{n} r^{(2 n-1) / 2} \cos \left(\frac{(2 n-1) \theta}{2}\right)
$$

It remains to satisfy the remaining B.C., $u(2, \theta)=\pi-\theta$. Thus, we require

$$
u(2, \theta)=\sum_{n=1}^{\infty} a_{n} 2^{(2 n-1) / 2} \cos \left(\frac{(2 n-1) \theta}{2}\right)=\pi-\theta
$$

By the orthogonality of the eigenfunctions, we have

$$
a_{n} 2^{(2 n-1) / 2}\left(\frac{\pi}{2}\right)=\int_{0}^{\pi}(\pi-\theta) \cos \left(\frac{(2 n-1) \theta}{2}\right) d \theta
$$

The integral on the right is solved by Maple, and the Fourier coefficient is given by:

$$
a_{n}=\frac{8\left(2^{-(2 n-1) / 2}\right)}{\pi\left(4 n^{2}-4 n+1\right)},
$$

so our solution is given by:

$$
u(r, \theta)=\sum_{n=1}^{\infty} \frac{8\left(2^{-(2 n-1) / 2}\right) r^{(2 n-1) / 2}}{\pi\left(4 n^{2}-4 n+1\right)} \cos \left(\frac{(2 n-1) \theta}{2}\right)
$$

b. Below is a colored heat map displaying the steady-state temperature distribution in this region. You must include your program.


```
%semicircular heat distribution
NptsR = 51;
NptsT = 51;
Nf = 50;
r=linspace(0,2,NptsR);
t=linspace(0,pi,NptsT);
[R,T]=meshgrid(r,t);
X=R.*\operatorname{cos (T);}
Y=R.*sin(T);
fs=8;
figure(101)
clf
b=zeros(1,Nf);
```

```
U=zeros(NptsR,NptsT);
for n=1:Nf
    b}(\textrm{n})=(8*\mp@subsup{2}{}{\wedge}(-(2*n-1)/2))/(pi*(4*\mp@subsup{n}{}{\wedge}2-4*n+1)); % Fourier coefficients
    Un=b (n)*R.^ ((2*n-1)/2).*\operatorname{cos}((2*n-1)*T/2); % Temperature (n)
    U=U+Un;
end
colormap jet;
surf(X,Y,U)
shading interp;
axis equal;
colorbar
view(-30,10);
print -depsc ss_semis19_heata.eps % Color
figure(102)
surf(X,Y,U)
colormap jet;
shading interp;
axis equal;
colorbar
view(0,90);
print -depsc ss_semis19_heatb.eps
```

5. a. We are given the ODE:

$$
\phi^{\prime \prime}-0.4 \phi^{\prime}+\lambda \phi=0, \quad \phi(0)=0, \quad \phi(8)=0 .
$$

The Sturm-Liouville eigenvalue problem satisfies:

$$
\left[p \phi^{\prime}\right]^{\prime}+q \phi+\lambda \sigma \phi=0 \quad \text { or } \quad p \phi^{\prime \prime}+p^{\prime} \phi^{\prime}+q \phi+\lambda \sigma \phi=0 .
$$

We convert the ODE above into a Sturm-Liouville eigenvalue problem by choosing a function $H(x)$ to multiply the equation above:

$$
H \phi^{\prime \prime}-0.4 H \phi^{\prime}+\lambda H \phi=0
$$

It follows that $p(x)=H(x)$ and $p^{\prime}=H^{\prime}=-0.4 H$. Thus,

$$
p(x)=H(x)=e^{-0.4 x}, \quad q(x)=0, \quad \text { and } \quad \sigma(x)=e^{-0.4 x} .
$$

The SL problem satisfies:

$$
\frac{d}{d x}\left(e^{-0.4 x} \frac{d \phi}{d x}\right)+\lambda e^{-0.4 x} \phi=0
$$

The characteristic polynomial is $r^{2}-0.4 r+\lambda=(r-0.2)^{2}+\lambda-0.04=0$. The Rayleigh Quotient readily shows that $\lambda \geq 0$, as

$$
\lambda=\frac{-\left.p(x) \phi(x) \phi^{\prime}(x)\right|_{0} ^{8}+\int_{0}^{8}\left(p(x)\left(\phi^{\prime}(x)\right)^{2}-q(x)(\phi(x))^{2}\right) d x}{\int_{0}^{8}(\phi(x))^{2} \sigma(x) d x} \geq 0,
$$

where $\phi(0)=\phi(8)=0, p(x)=\sigma(x)>0, q(x)=0, \phi^{2}(x)>0$, and $\left(\phi^{\prime}(x)\right)^{2} \geq 0$.
If $\lambda=0$, then $\phi^{\prime \prime}-0.4 \phi^{\prime}=0$, which has the general solution, $\phi(x)=c_{1}+c_{2} e^{0.4 x}$, so $\phi(0)=$ $c_{1}+c_{2}=0$. The other BC gives $c_{1}+c_{2} e^{3.2}=0$, so $c_{1}=c_{2}=0$, leaving only the trivial solution.

If $\lambda-0.04=-\alpha^{2}<0$, then $r=0.2 \pm \alpha$, which has the solution,
$\phi(x)=e^{0.2 x}\left(c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x)\right)$. The B.C. $\phi(0)=c_{1}=0$. The other B.C. gives $\phi(8)=c_{2} e^{1.6} \sinh (8 \alpha)=0$, which implies $c_{2}=0$, leaving only the trivial solution.

If $\lambda=0.04$, then $r=0.2$, which has the solution, $\phi(x)=e^{0.2 x}\left(c_{1}+c_{2} x\right)$. The B.C. $\phi(0)=$ $c_{1}=0$. The other B.C. gives $\phi(8)=c_{2} 5 e^{1.6}=0$, which implies $c_{2}=0$, leaving only the trivial solution.

If $\lambda-0.04=\alpha^{2}>0$, then $r=0.2 \pm i \alpha$, which has the solution, $\phi(x)=e^{0.2 x}\left(c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)\right)$. The B.C. $\phi(0)=c_{1}=0$. The other B.C. gives $\phi(8)=$ $c_{2} e^{1.6} \sin (8 \alpha)=0$, which has nontrivial solutions if $\alpha_{n}=\frac{n \pi}{8}$. It follows that the eigenvalues and eigenfunctions are:

$$
\lambda_{n}=0.04+\left(\frac{n \pi}{8}\right)^{2}, \quad \text { with } \quad \phi_{n}(x)=e^{0.2 x} \sin \left(\frac{n \pi x}{8}\right), \quad n=1,2,3, \ldots
$$

The orthogonality relation for this SL problem with eigenfunctions $\phi_{m}(x)$ and $\phi_{n}(x), m \neq n$, is:

$$
\int_{0}^{8} \phi_{m}(x) \phi_{n}(x) e^{-0.4 x} d x=0 .
$$

b. A one-dimensional rod for heat conduction with convection is given by:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-0.4 \frac{\partial u}{\partial x}, \quad 0<x<8, \quad t>0,
$$

with B.C.'s and I.C.'s:

$$
u(0, t)=0, \quad u(8, t)=0, \quad \text { and } \quad u(x, 0)=f(x) .
$$

From separation of variables with $u(x, t)=\phi(x) h(t)$, we have:

$$
\phi h^{\prime}=\phi^{\prime \prime} h-0.4 \phi^{\prime} h \quad \text { or } \quad \frac{h^{\prime}}{h}=\frac{\phi^{\prime \prime}-0.4 \phi^{\prime}}{\phi}=-\lambda .
$$

This gives the t-equation with its solution:

$$
h^{\prime}+\lambda h=0, \quad \text { so } \quad h(t)=c e^{-\lambda t} .
$$

The x-equation and its B.C.'s are given by:

$$
\phi^{\prime \prime}-0.4 \phi^{\prime}+\lambda \phi=0 \quad \text { with } \quad \phi(0)=0 \quad \text { and } \quad \phi(8)=0,
$$

which is the same Sturm-Liouville problem from Part a.
c. Having solved the t-equation and the SL problem in Parts a and b, we have the product solution:

$$
u_{n}(x, t)=A_{n} e^{-\left(0.04+n^{2} \pi^{2} / 64\right) t} e^{0.2 x} \sin \left(\frac{n \pi x}{8}\right)
$$

We apply the Superposition Principle to obtain the solution:

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-\left(0.04+n^{2} \pi^{2} / 64\right) t} e^{0.2 x} \sin \left(\frac{n \pi x}{8}\right) .
$$

The initial condition gives:

$$
u(x, 0)=f(x)=\sum_{n=1}^{\infty} A_{n} e^{0.2 x} \sin \left(\frac{n \pi x}{8}\right) .
$$

We use the orthogonality relationship to find the Fourier coefficients:

$$
A_{n}=\frac{\int_{0}^{8} f(x)\left(e^{0.2 x} \sin \left(\frac{n \pi x}{8}\right)\right) e^{-0.4 x} d x}{\int_{0}^{8}\left(e^{0.2 x} \sin \left(\frac{n \pi x}{8}\right)\right)^{2} e^{-0.4 x} d x}=\frac{1}{4} \int_{0}^{8} f(x) e^{-0.2 x} \sin \left(\frac{n \pi x}{8}\right) d x
$$

6. a. The operator L is self-adjoint if

$$
\int_{0}^{6}[u L(v)-v L(u)] d x=0 .
$$

Assume that the functions, $u(x)$ and $v(x)$, satisfy the B.C.'s, $u(0)=0, u^{\prime \prime}(0)=0, u(6)=0$, $u^{\prime \prime}(6)=0, v(0)=0, v^{\prime \prime}(0)=0, v(6)=0$, and $v^{\prime \prime}(6)=0$. We integrate by parts:

$$
\int_{0}^{6}\left(u v^{\prime \prime \prime \prime}-v u^{\prime \prime \prime \prime}\right) d x=\left.\left(u v^{\prime \prime \prime}-v u^{\prime \prime \prime}\right)\right|_{0} ^{6}-\int_{0}^{6}\left(u^{\prime} v^{\prime \prime \prime}-v^{\prime} u^{\prime \prime \prime}\right) d x .
$$

Since $u(0)=u(6)=v(0)=v(6)=0$ (fixed ends), the function evaluations vanish at the endpoints. Integration by parts a second time gives:

$$
-\int_{0}^{6}\left(u^{\prime} v^{\prime \prime \prime}-v^{\prime} u^{\prime \prime \prime}\right) d x=-\left.\left(u^{\prime} v^{\prime \prime}-v^{\prime} u^{\prime \prime}\right)\right|_{0} ^{6}+\int_{0}^{6}\left(u^{\prime \prime} v^{\prime \prime}-v^{\prime \prime} u^{\prime \prime}\right) d x=0
$$

because the last integral vanishes and we have the B.C.'s $u^{\prime \prime}(0)=u^{\prime \prime}(6)=v^{\prime \prime}(0)=v^{\prime \prime}(6)=0$ (free force). This shows that L is self-adjoint.
b. From Part a, if $L\left(\phi_{m}\right)=\lambda_{m} \phi_{m}$ and $L\left(\phi_{n}\right)=\lambda_{n} \phi_{n}$, then

$$
\int_{0}^{6}\left(\phi_{m} L\left(\phi_{n}\right)-\phi_{n} L\left(\phi_{m}\right)\right) d x=\int_{0}^{6}\left(\lambda_{n} \phi_{m} \phi_{n}-\lambda_{m} \phi_{n} \phi_{m}\right) d x=\left(\lambda_{n}-\lambda_{m}\right) \int_{0}^{6} \phi_{m} \phi_{n} d x=0,
$$

which shows orthogonality of distinct eigenvalues. Suppose that λ is a complex eigenvalue with complex eigenfunction ϕ, then $L(\phi)-\lambda \phi=0$. Taking the complex conjugate, we have

$$
\overline{L(\phi)-\lambda \phi}=\bar{L}(\bar{\phi})-\bar{\lambda} \bar{\phi}=L(\bar{\phi})-\bar{\lambda} \bar{\phi}=0
$$

so $\bar{\lambda}$ is an eigenvalue and $\bar{\phi}$ is its corresponding eigenfunction. However, the orthogonality relationship gives:

$$
(\lambda-\bar{\lambda}) \int_{0}^{6} \phi \bar{\phi} d x=0
$$

which since $\phi \bar{\phi}=|\phi|^{2}>0$ for an eigenfunction, implies that $\lambda-\bar{\lambda}=0$, so λ is real, which contradicts the assumption of λ being complex.

From the expression related to the Rayleigh Quotient, we show that the eigenvalues are nonnegative:

$$
\begin{aligned}
\lambda & =\frac{\int_{0}^{6} \phi L[\phi] d x}{\int_{0}^{6} \phi^{2} d x}=\frac{\int_{0}^{6}\left(\frac{d}{d x}\left(\phi \cdot \frac{d^{3} \phi}{d x^{3}}-\frac{d \phi}{d x} \cdot \frac{d^{2} \phi}{d x^{2}}\right)+\left(\frac{d^{2} \phi}{d x^{2}}\right)^{2}\right) d x}{\int_{0}^{6} \phi^{2} d x} \\
& =\frac{\left.\left(\phi \cdot \frac{d^{3} \phi}{d x^{3}}-\frac{d \phi}{d x} \cdot \frac{d^{2} \phi}{d x^{2}}\right)\right|_{0} ^{6}+\int_{0}^{6}\left(\frac{d^{2} \phi}{d x^{2}}\right)^{2} d x}{\int_{0}^{6} \phi^{2} d x} \geq 0,
\end{aligned}
$$

since the BCs give $\left.\left(\phi \cdot \frac{d^{3} \phi}{d x^{3}}-\frac{d \phi}{d x} \cdot \frac{d^{2} \phi}{d x^{2}}\right)\right|_{0} ^{6}=0,\left(\frac{d^{2} \phi}{d x^{2}}\right)^{2} \geq 0$, and $\phi^{2}>0$. It follows that $\lambda \geq 0$.
The SL problem with B.C.'s satisfies:

$$
L(\phi)-\lambda \phi=\phi^{\prime \prime \prime \prime}-\lambda \phi=0, \quad \phi(0)=0, \quad \phi^{\prime \prime}(0)=0, \quad \phi(6)=0, \quad \text { and } \quad \phi^{\prime \prime}(6)=0
$$

The characteristic equation is $r^{4}-\lambda=0$, so we consider the various cases of real λ.
If $\lambda=0$, then integrating 4 times gives:

$$
\phi(x)=\frac{c_{1} x^{3}}{6}+\frac{c_{2} x^{2}}{2}+c_{3} x+c_{4}
$$

We have $\phi(0)=c_{4}=0$ and $\phi^{\prime \prime}(0)=c_{2}=0$. Since $\phi^{\prime \prime}(6)=6 c_{1}=0, c_{1}=0$. Finally, $\phi(6)=6 c_{3}=0$ or $c_{3}=0$, leaving only the trivial solution, so $\lambda=0$ is not an eigenvalue.

From above it follows that λ must be positive, so assume $\lambda=\alpha^{4}>0$. The characteristic equation satisfies:

$$
r^{4}-\alpha^{4}=\left(r^{2}+\alpha^{2}\right)\left(r^{2}-\alpha^{2}\right)=(r+i \alpha)(r-i \alpha)(r+\alpha)(r-\alpha)=0
$$

This gives the general solution:

$$
\phi(x)=c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x)+c_{3} \cos (\alpha x)+c_{4} \sin (\alpha x)
$$

The BCs $\phi(0)=0$ and $\phi^{\prime \prime}(0)=0$ give:

$$
c_{1}+c_{3}=0 \quad \text { and } \quad \alpha^{2}\left(c_{1}-c_{3}\right)=0, \quad \text { so } \quad c_{1}=c_{3}=0
$$

The BCs $\phi(6)=0$ and $\phi^{\prime \prime}(6)=0$ give:

$$
c_{2} \sinh (6 \alpha)+c_{4} \sin (6 \alpha)=0 \quad \text { and } \quad \alpha^{2}\left(c_{2} \sinh (6 \alpha)-c_{4} \sin (6 \alpha)\right)=0
$$

It follows that $c_{2} \sinh (6 \alpha)=0$ or $c_{2}=0$ and $c_{4} \sin (6 \alpha)=0$, which leads to non-trivial solutions if $6 \alpha_{n}=n \pi, n=1,2, \ldots$ It follows that the eigenvalues and corresponding eigenfunctions are given by:

$$
\lambda_{n}=\alpha_{n}^{4}=\left(\frac{n \pi}{6}\right)^{4} \quad \text { and } \quad \phi_{n}(x)=\sin \left(\frac{n \pi x}{6}\right) \text { for } n=1,2, \ldots
$$

The orthogonality relationship satisfies:

$$
\int_{0}^{6} \sin \left(\frac{m \pi x}{6}\right) \sin \left(\frac{n \pi x}{6}\right) d x=0, \quad n \neq m
$$

c. The displacement of a uniform thin beam in a medium that resists motion satisfies:

$$
\frac{\partial^{4} u}{\partial x^{4}}=-\frac{\partial^{2} u}{\partial t^{2}}-0.2 \frac{\partial u}{\partial t}, \quad 0<x<6, \quad t>0 .
$$

with the B.C.'s:

$$
u(0, t)=0, \quad u_{x x}(0, t)=0, \quad u(6, t)=0, \quad u_{x x}(6, t)=0 .
$$

and I.C.'s, $u(x, 0)=0$, and the initial velocity:

$$
\frac{\partial u}{\partial t}(x, 0)= \begin{cases}0, & x \in(0,1) \\ 2, & x \in(1,2), \\ 0, & x \in(2,6)\end{cases}
$$

We use separation of variables with $u(x, t)=\phi(x) h(t)$, so

$$
\phi^{\prime \prime \prime \prime} h=-\phi\left(h^{\prime \prime}-0.2 h^{\prime}\right) \quad \text { or } \quad \frac{\phi^{\prime \prime \prime \prime}}{\phi}=-\frac{h^{\prime \prime}-0.2 h^{\prime}}{h}=\lambda .
$$

This gives the SL problem from Part b, $\phi^{(4)}-\lambda \phi=0$ with BCs $\phi(0)=0, \phi^{\prime \prime}(0)=0, \phi(6)=0$, $\phi^{\prime \prime}(6)=0$. which has the eigenvalues and eigenfunctions:

$$
\lambda_{n}=\alpha_{n}^{4}=\left(\frac{n \pi}{6}\right)^{4} \quad \text { with } \quad \phi_{n}(x)=\sin \left(\frac{n \pi x}{6}\right), \quad n=1,2, \ldots
$$

The t-equation becomes:

$$
h_{n}^{\prime \prime}+0.2 h_{n}^{\prime}+\lambda_{n} h_{n}=0,
$$

which has the characteristic equation:

$$
r^{2}+0.2 r+\lambda_{n}=0, \quad \text { so } \quad r=-0.1 \pm \sqrt{0.01-\lambda_{n}} .
$$

Since the smallest eigenvalue is $\lambda_{1}=\left(\frac{\pi}{6}\right)^{4} \approx 0.0752>0.01$, we have $0.01-\lambda_{n}<0$, which implies that r is complex. Thus, if we define $\omega_{n}=\sqrt{\lambda_{n}-0.01}$, then we write the solution:

$$
h_{n}(t)=e^{-0.1 t}\left(A_{n} \cos \left(\omega_{n} t\right)+B_{n} \sin \left(\omega_{n} t\right)\right), \quad n=1,2, \ldots
$$

The Superposition Principle gives:

$$
u(x, t)=\sum_{n=1}^{\infty} e^{-0.1 t}\left(A_{n} \cos \left(\omega_{n} t\right)+B_{n} \sin \left(\omega_{n} t\right)\right) \sin \left(\frac{n \pi x}{6}\right) .
$$

From the I.C., $u(x, 0)=0$, it follows that $A_{n}=0$. The velocity satisfies:

$$
u_{t}(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-0.1 t}\left(\omega_{n} \cos \left(\omega_{n} t\right)-0.1 \sin \left(\omega_{n} t\right)\right) \sin \left(\frac{n \pi x}{6}\right) .
$$

The other I.C. gives:

$$
\frac{\partial u}{\partial t}(x, 0)=F(x)=\sum_{n=1}^{\infty} B_{n} \omega_{n} \sin \left(\frac{n \pi x}{6}\right) .
$$

Multiplying by $\phi_{n}(x)$, integrating from $x=0$ to 6 , and using orthogonality gives:

$$
\int_{0}^{6} F(x) \sin \left(\frac{n \pi x}{6}\right) d x=\int_{0}^{6} B_{n} \omega_{n} \sin ^{2}\left(\frac{n \pi x}{6}\right) d x=3 B_{n} \omega_{n} .
$$

It follows that the Fourier coefficient is:

$$
\begin{aligned}
B_{n} & =\frac{1}{3 \omega_{n}} \int_{0}^{6} F(x) \sin \left(\frac{n \pi x}{6}\right) d x=\frac{2}{3 \omega_{n}} \int_{1}^{2} \sin \left(\frac{n \pi x}{6}\right) d x \\
& =-\left.\frac{4}{n \pi \omega_{n}} \cos \left(\frac{n \pi x}{6}\right)\right|_{1} ^{2}=\frac{4\left(\cos \left(\frac{n \pi}{6}\right)-\cos \left(\frac{n \pi}{3}\right)\right)}{n \pi \omega_{n}}
\end{aligned}
$$

Thus, the solution to this problem is:

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{4\left(\cos \left(\frac{n \pi}{6}\right)-\cos \left(\frac{n \pi}{3}\right)\right)}{n \pi \omega_{n}} e^{-0.1 t} \sin \left(\omega_{n} t\right) \sin \left(\frac{n \pi x}{6}\right),
$$

where $\omega_{n}=\sqrt{\left(\frac{n \pi}{6}\right)^{4}-0.01}$.
d. With 50 terms in the series solution of $u(x, t)$, the figure below shows the displacement of the beam at times $t=0,1,2,5,10$, and 20 .

Below is a surface plot for $u(x, t)$ with $x \in[0,6]$ and $t \in[0,50]$.


```
%format compact;
L = 6;
NptsX=151; % number of x pts
NptsT=151; % number of t pts
Nf=200; % number of Fourier terms
x=linspace(0,L,NptsX);
t=linspace(0,20,NptsT);
[X,T]=meshgrid(x,t) ;
k = 0.2;
fs=8;
figure(1)
clf
b=zeros(1,Nf);
U=zeros(NptsT,NptsX);
for n=1:Nf
    w(n) = sqrt((n*pi/L)^4-0.01);
    b}(\textrm{n})=(4*(\operatorname{cos}(\textrm{n}*\textrm{pi}/\textrm{L})-\operatorname{cos}(2*\textrm{n}*\textrm{pi}/\textrm{L})))/(\textrm{n}*\textrm{pi*w}(\textrm{n}))
    Un = b (n)*exp (- (k/2)*T).*sin(w (n)*T).*sin (n*pi*X/L);
    U = U + Un;
end
set(gca,'FontSize',[fs]);
surf(X,T,U);
shading interp
colormap(jet)
fontlabs = 'Times New Roman';
xlabel('$x$','Fontsize',fs,'FontName',fontlabs,'interpreter','latex');
ylabel('$t$','Fontsize',fs,'FontName',fontlabs,'interpreter','latex');
zlabel('$u(x,t)$','Fontsize',fs,'FontName',fontlabs,'interpreter','latex');
%axis tight
colorbar
view([-75 20])
set(gca,'FontSize',12); % Axis tick font size
print -depsc beam_plots20.eps
figure(2)
xx=linspace (0,6,200);
V1=zeros (1,200);
for n=1:Nf
    Vn = b(n)*exp(-(k/2)*1)*\operatorname{sin}(\textrm{m}(\textrm{n})*1).*\operatorname{sin}(\textrm{n}*\textrm{pi*xx}/\textrm{L});
    V1 = V1 + Vn;
end
V2=zeros(1,200);
for n=1:Nf
    Vn=b(n)*exp(-(k/2)*2)*sin(w(n)*2).*sin(n*pi*xx/L);
    V2 = V2 + Vn;
end
V5=zeros(1,200);
for n=1:Nf
    Vn=b(n)*exp(-(k/2)*5)*sin(w(n)*5).*sin(n*pi*xx/L);
    V5 = V5 + Vn;
end
V10=zeros(1,200);
for n=1:Nf
    Vn = b (n)*exp (-(k/2)*10)*\operatorname{sin}(\textrm{w}(\textrm{n})*10).*\operatorname{sin}(n*pi*xx/L);
    V10 = V10 + Vn;
end
```

```
V20=zeros(1,200);
for n=1:Nf
    Vn=b(n)*exp(-(k/2)*20)*sin(w(n)*20).*sin(n*pi*xx/L);
    V20 = V20 + Vn;
end
plot(xx,V1,'b-','LineWidth',1.5);
hold on
plot(xx,V2,'m-','LineWidth',1.5);
plot(xx,V5,'r-','LineWidth',1.5);
plot(xx,V10,'k-','LineWidth',1.5);
plot(xx,V20,'-','color', [0,0.6,0],'LineWidth',1.5);
grid;
h = legend('$t = 1$','$t = 2$','$t = 5$','$t = 10$', ...
    '$t = 20$','Location','northwest');
set(h,'Interpreter','latex')
h.FontSize = 10;
xlim([0,6]);
ylim([-0.4,1.4]);
set(gca,'FontSize',12); % Axis tick font size
print -depsc beam_plotbs20.eps
```

