
Spring 2023 Math 531 Take-Home Exam 1 Solutions

1. a. Consider the Sturm-Liouville problem for x ∈ (0, 3):

u′′ + λu = 0, u′(0) = 0, u(3) = 0.

We consider 3 cases:

Case (i): If λ = 0, then u(x) = c1x + c2. One BC gives u′(0) = c1 = 0. The other BC gives
u(3) = c2 = 0, which gives only the trivial solution.

Case (ii): If λ = −α2 < 0, then u(x) = c1 cosh(αx)+c2 sinh(αx). One BC gives u′(0) = c2α = 0
or c2 = 0. The other BC gives u(3) = c1 cosh(3α) = 0 or c1 = 0, which gives only the trivial
solution.

Case (iii): If λ = α2 > 0, then u(x) = c1 cos(αx) + c2 sin(αx). One BC gives u′(0) = c2α = 0 or
c2 = 0. The other BC gives u(3) = c1 cos(3α) = 0, so for non-trivial solutions,

αn = (2n−1)π
6 , n = 1, 2, ...

It follows that the eigenvalues and corresponding eigenfunctions are:

λn =
(2n− 1)2π2

36
and un(x) = cos

(
(2n− 1)πx

6

)
, n = 1, 2, ...

b. The eigenfunctions from Part a form a complete orthogonal set, so we represent the function:

f(x) =

{
0, 0 ≤ x < 1,
2, 1 ≤ x ≤ 3.

by f(x) ∼
∞∑
n=1

An cos

(
(2n− 1)πx

6

)
.

Orthogonality gives:∫ 3

0
f(x) cos

(
(2n− 1)πx

6

)
dx =

∫ 3

1
2 cos

(
(2n− 1)πx

6

)
dx = An

∫ 3

0
cos2

(
(2n− 1)πx

6

)
dx

It follows that

An =
4

3

∫ 3

1
cos

(
(2n− 1)πx

6

)
dx =

8

(2n− 1)π
sin

(
(2n− 1)πx

6

)∣∣∣∣3
1

=
8

(2n− 1)π

[
sin

(
(2n− 1)πx

2

)
− sin

(
(2n− 1)π

6

)]
=

8

(2n− 1)π

[
(−1)n+1 + cos

(π
3

(n+ 1)
)]

c. This Fourier series converges to 2 at x = 2 (pt. of cont.). It converges to 1 at x = 1 (midpoint
of jump). It converges to 2 at x = −5

2 (even extension).

d. Below we show the graph of the approximation of f(x) using n = 5, 10, 20 terms in the
Fourier series for x ∈ [−5, 5]. In black, the graph shows the points of convergence of the Fourier
series on this interval.
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The absolute error between the 20 term Fourier series and the f(x) at various values of x
satisfies:

x Fourier series Absolue error
0.1 0.03531 0.03531
0.95 0.3363 0.3363

2 2.05992 0.05992
2.75 1.8922 0.1078

The maximum value of the function with 20 terms is 2.35868, which occurs at x = 2.85367, so
the maximum absolute error is 0.35868, which is roughly 9% of the jump.

1 % Periodic Fourier cosine series TH1 s23
2

3 NptsX=1001; % number of x pts
4 x = linspace(-5,5,NptsX);
5 f1 = zeros(1,NptsX);
6 f2 = zeros(1,NptsX);
7 f3 = zeros(1,NptsX);
8 for n=1:5
9 b(n)=8/((2*n-1)*pi)*(sin((n-1/2)*pi) - sin((n-1/2)*pi/3));

10 fn=b(n)*cos((n-1/2)*pi*x/3); % Fourier function(n)
11 f1=f1+fn;
12 end
13 for n=1:10
14 b(n)=8/((2*n-1)*pi)*(sin((n-1/2)*pi) - sin((n-1/2)*pi/3));
15 fn=b(n)*cos((n-1/2)*pi*x/3); % Fourier function(n)
16 f2=f2+fn;
17 end
18 for n=1:20
19 b(n)=8/((2*n-1)*pi)*(sin((n-1/2)*pi) - sin((n-1/2)*pi/3));
20 fn=b(n)*cos((n-1/2)*pi*x/3); % Fourier function(n)
21 f3=f3+fn;
22 end



23

24 plot(x,f1,'b-','LineWidth',1.5);
25 hold on
26 plot(x,f2,'r-','LineWidth',1.5);
27 plot(x,f3,'m-','LineWidth',1.5);
28 plot([-1 1],[0,0],'k-','LineWidth',1.5);
29 plot([1 3],[2 2],'k-','LineWidth',1.5);
30 plot([-3 -1],[2 2],'k-','LineWidth',1.5);
31 plot([-5 -3],[-2 -2],'k-','LineWidth',1.5);
32 plot([3 5],[-2 -2],'k-','LineWidth',1.5);
33 plot([-1 1],[1 1],'ko','MarkerSize',5,'MarkerFaceColor','k');
34 plot([-3 3],[0 0],'ko','MarkerSize',5,'MarkerFaceColor','k');
35 grid;
36 h = legend('Fourier series, $n = 5$', 'Fourier series, $n = 10$',...
37 'Fourier series, $n = 20$','Fourier convergence', 'Location','south');
38 set(h,'Interpreter','latex')
39 h.FontSize = 10;
40 xlim([-5,5]);
41 ylim([-2.5 2.5]);
42 xlabel('$x$','FontSize',12,'interpreter','latex');
43 ylabel('$u$','FontSize',12,'interpreter','latex');
44 set(gca,'FontSize',12); % Axis tick font size
45 print -depsc th1 1d s23.eps

2. a. The string problem satisfies the nonhomogeneous partial differential equation:

utt + 2kut = c2uxx − g, t > 0 and 0 < x < 1,

with k > 0 (k � cπ) and g > 0.The boundary conditions are u(0, t) = 0 and u(1, t) = 0. The
equilibrium solution satisfies:

c2u′′E − g = 0, uE(0) = 0 and uE(1) = 0.

Since u′′E = g
c2

, we integrate twice to give

uE(x) =
g

2c2
x2 + c1x+ c2.

The boundary conditions give uE(0) = 0 = c2 and uE(1) = 0 = g
2c2

+c1 or c1 = − g
2c2

. It follows
that the equilibrium solution is

uE(x) =
g

2c2
(x2 − x).

b. We let w(x, t) = u(x, t) − uE(x), then wt = ut, wtt = utt, and wxx = uxx − u′′E . However,
u′′E = g

2c2
, so when substituted into the string problem, we have

wtt + 2kwt = c2
(
wxx +

g

c2

)
− g = c2wxx.

This gives a damped linear homogeneous wave equation in w with the homogeneous boundary
conditions:

w(0, t) = 0 and w(1, t) = 0.

The initial conditions are:

w(x, 0) = u(x, 0)− uE(x) = 0 and wt(x, 0) = 1.



We solve the equation in w using separation of variables, so w(x, t) = φ(x)h(t) and

φh′′ + kφh′ = c2φ′′h or
h′′ + 2kh′

c2h
=
φ′′

φ
= −λ.

The Sturm-Liouville problem is

φ′′ + λφ = 0 with φ(0) = 0 and φ(1) = 0.

This is a standard SL problem with Dirichlet BCs, giving the eigenvalues and associated eigen-
vectors:

λn = n2π2 and φn(x) = sin(nπx).

The t-equation is
h′′n + 2kh′n + (n2π2c2)hn = 0,

which has the characteristic equation:

r2 + 2kr + n2π2c2 = 0, so r = −k ± iωn,

where ω2
n = n2π2c2 − k2 > 0. This gives the general solution:

hn(t) = e−kt[An cos(ωnt) +Bn sin(ωnt)].

Since the initial position is zero, hn(0) = 0 and An = 0. We now apply the Superposition
Principle and obtain:

w(x, t) =
∞∑
n=0

Bne
−kt sin(ωnt) sin(nπx).

The velocity is:

wt(x, t) =

∞∑
n=0

Bne
−kt[−k sin(ωnt) + ωn cos(ωnt)] sin(nπx),

so the initial velocity is

wt(x, 0) = 1 =

∞∑
n=0

Bnωn sin(nπx).

Orthogonality of the eigenfunctions gives us the Fourier coefficients:

Bn =
2

ωn

∫ 1

0
sin(nπx)dx =

2

nπωn
[1− cos(nπ)] =

2

nπωn
[1− (−1)n].

It follows that

u(x, t) =

∞∑
n=0

Bne
−kt sin(ωnt) sin(nπx) +

g

2c2
(x2 − x),

where

Bn =
2

nπωn
[1− (−1)n] and ωn =

√
n2π2c2 − k2.

With the exponential decay in the Fourier series, we have

lim
t→∞

u(x, t) = uE(x) =
g

2c2
(x2 − x).



3. Given the heat equation:

∂u

∂t
= k∇2u, 0 < x < 2, 0 < y < 3, t > 0.

with boundary conditions:

∂u

∂x
(0, y, t) = A(3− y),

∂u

∂x
(2, y, t) = y2,

∂u

∂y
(x, 0, t) = 0, and

∂u

∂y
(x, 3, t) = 0,

we begin with the solvability condition:∮
∇u · n ds = 0,

which for this problem becomes:∫ 2

0
uy(x, 0, t)dx+

∫ 3

0
ux(2, y, t)dx+

∫ 0

2
uy(x, 3, t)dx+

∫ 0

3
ux(0, y, t)dx = 0.

Inserting the B.C.’s, we find that:∫ 2

0
0 dx+

∫ 3

0
y2 dy +

∫ 0

2
0 dx+

∫ 0

3
A(3− y)dy =

y3

3

∣∣∣∣3
0

−
(

3Ay − Ay2

2

)∣∣∣∣3
0

,

= 9−
(

9A− 9A

2

)
= 9− 9A

2
= 0.

This implies that A = 2.

For the steady-state problem we split the original problem into 2 problems, ∇2u1 = 0 with
∂u1
∂x (0, y) = A(3−y) and ∇2u2 = 0 with ∂u2

∂x (2, y) = y2 and all other B.C.’s for each problem are
homogeneous (Neumann). As usual we start with separation of variables, u1(x, y) = h(x)φ(y),
so h ′′φ+ hφ ′′ = 0 or

h ′′

h
= −φ

′′

φ
= λ.

The SL problem is φ ′′+λφ = 0 with φ ′(0) = 0 = φ ′(3). We have solved this eigenvalue problem
before, and we obtained the eigenvalues and corresponding eigenfunctions:

λ0 = 0 with φ0(y) = 1, and λn =
n2π2

9
with φn(y) = cos

(nπy
3

)
.

The x-equation satisfies h ′′ − n2π2

9 h = 0 with h ′(2) = 0, so we can write:

hn(x) = c1 cosh
(nπ

3
(2− x)

)
+ c2 sinh

(nπ
3

(2− x)
)
.

The B.C. implies that c2 = 0. For λ0 = 0, h0(x) = c1 + c2x with h0
′(2) = 0, implying that

c2 = 0. Combining these results with the Superposition Principle gives:

u1(x, y) = A0 +

∞∑
n=1

An cos
(nπy

3

)
cosh

(nπ
3

(2− x)
)
.



From the nonhomogeneous B.C., we find the Fourier coefficients. We see that for A = 2:

∂u1
∂x

(0, y) = 2(3− y) = −
∞∑
n=1

An
nπ

3
cos
(nπy

3

)
sinh

(
2nπ

3

)
.

Taking advantage of orthogonality, we obtain:

−An
nπ

3
sinh

(
2nπ

3

)∫ 3

0
cos2

(nπy
3

)
dy = 2

∫ 3

0
(3− y) cos

(nπy
3

)
dy.

With Maple doing the integral on the right hand side and some algebra, we have:

An =
36

n3π3 sinh
(
2nπ
3

) ((−1)n − 1) .

We now let u2(x, y) = h(x)φ(y), and the SL problem is the same as for u1(x, y). We solve

h ′′ − n2π2

9 h = 0 with h ′(0) = 0, so we can write:

hn(x) = c1 cosh
(nπx

3

)
+ c2 sinh

(nπx
3

)
.

The B.C. implies that c2 = 0. For λ0 = 0, h0(x) = c1 + c2x with h0
′(2) = 0, implying that

c2 = 0. Combining these results with the Superposition Principle gives:

u2(x, y) = B0 +
∞∑
n=1

Bn cos
(nπy

3

)
cosh

(nπx
3

)
.

From the nonhomogeneous B.C., we find the Fourier coefficients. We see that:

∂u2
∂x

(2, y) = y2 =

∞∑
n=1

Bn
nπ

3
cos
(nπy

3

)
sinh

(
2nπ

3

)
.

Taking advantage of orthogonality, we obtain:

Bn
nπ

3
sinh

(
2nπ

3

)
3

2
=

∫ 3

0
y2 cos

(nπy
3

)
dy.

With Maple doing the integral on the right hand side and some algebra, we have:

Bn =
108(−1)n

n3π3 sinh
(
2nπ
3

) .
It remains to show the constants A0 and B0, which depend on the initial conditions. We have:∫ 3

0

∫ 2

0
(A0 +B0)dx dy = (A0 +B0)6,∫ 3

0

∫ 2

0
u(x, y)dx dy =

∫ 3

0

∫ 2

0
x(3− y)dx dy =

x2(3y − y2/2)

2

∣∣∣∣2
0

∣∣∣∣∣
3

0

= 9.



It follows that A0 +B0 = 3
2 . Combining all these results gives:

u(x, y) =
3

2
+

∞∑
n=1

36

n3π3 sinh
(
2nπ
3

) (((−1)n − 1) cosh
(nπ

3
(2− x)

)
+ 3(−1)n cosh

(nπx
3

))
cos
(nπy

3

)
.

4. a. The steady-state temperature distribution of the semi-circular region is given by:

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0,

which has the B.C.’s ∂u
∂θ (r, 0) = 0, u(r, π) = 0, and u(2, θ) = π − θ. There is the implicit B.C.

that limr→0 |u(r, θ)| is bounded. Let u(r, θ) = h(r)φ(θ), then Laplace’s equation gives:

φ

r

d

dr

(
r
dh

dr

)
+
hφ ′′

r2
= 0 or

r (rh ′)′

h
= −φ

′′

φ
= λ.

The SL problem is:
φ ′′ + λφ = 0, φ ′(0) = 0 and φ(π) = 0.

If λ = 0, then φ(θ) = c1θ+ c2. The B.C. φ ′(0) = 0 = c1. The B.C. φ(π) = 0 = c2, so this gives
the trivial solution, which implies that λ = 0 is not an eigenvalue.

If λ = −α2 < 0, then φ(θ) = c1 cosh(αθ) + c2 sinh(αθ). The B.C. φ ′(0) = 0 = c2α. The B.C.
φ(π) = 0 = c1 cosh(απ). Since cosh(απ) > 0, c1 = 0, which again gives only the trivial solution,
so λ < 0 does not produce any eigenvalues.

If λ = α2 < 0, then φ(θ) = c1 cos(αθ) + c2 sin(αθ). The B.C. φ ′(0) = 0 = c2α. The B.C.
φ(π) = 0 = c1 cos(απ). For a nontrivial solution we need cos(απ) = 0. It follows that αn =
2n−1

2 . Thus, the eigenvalues and corresponding eigenfunctions are:

λn =
(2n− 1)2

4
with φn(θ) = cos

(
(2n− 1)θ

2

)
.

The r-equation becomes:

r
(
rh ′
)′ − (2n− 1)2

4
h = 0 or r2h ′′ + rh ′ − (2n− 1)2

4
h = 0.

Try a solution h(r) = rz, and then this Cauchy-Euler equation has the auxiliary equation:

z2 − (2n− 1)2

4
= 0, so z = ±(2n− 1)

2
.

It follows that the general solution is:

hn(r) = c1r
(2n−1)/2 + c2r

−(2n−1)/2.

The boundedness condition as r → 0 implies that c2 = 0.

The Superposition Principle gives:

u(r, θ) =

∞∑
n=1

anr
(2n−1)/2 cos

(
(2n− 1)θ

2

)
.



It remains to satisfy the remaining B.C., u(2, θ) = π − θ. Thus, we require

u(2, θ) =
∞∑
n=1

an2(2n−1)/2 cos

(
(2n− 1)θ

2

)
= π − θ.

By the orthogonality of the eigenfunctions, we have

an2(2n−1)/2
(π

2

)
=

∫ π

0
(π − θ) cos

(
(2n− 1)θ

2

)
dθ.

The integral on the right is solved by Maple, and the Fourier coefficient is given by:

an =
8(2−(2n−1)/2)

π(4n2 − 4n+ 1)
,

so our solution is given by:

u(r, θ) =

∞∑
n=1

8(2−(2n−1)/2)r(2n−1)/2

π(4n2 − 4n+ 1)
cos

(
(2n− 1)θ

2

)
.

b. Below is a colored heat map displaying the steady-state temperature distribution in this
region. You must include your program.
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1 %semicircular heat distribution
2

3 NptsR = 51;
4 NptsT = 51;
5 Nf = 50;
6

7 r=linspace(0,2,NptsR);
8 t=linspace(0,pi,NptsT);
9 [R,T]=meshgrid(r,t);

10 X=R.*cos(T);
11 Y=R.*sin(T);
12

13 fs=8;
14 figure(101)
15 clf
16

17 b=zeros(1,Nf);



18 U=zeros(NptsR,NptsT);
19

20 for n=1:Nf
21 b(n)=(8*2ˆ(-(2*n-1)/2))/(pi*(4*nˆ2-4*n+1)); % Fourier coefficients
22 Un=b(n)*R.ˆ((2*n-1)/2).*cos((2*n-1)*T/2); % Temperature(n)
23 U=U+Un;
24 end
25

26 colormap jet;
27 surf(X,Y,U)
28 shading interp;
29 axis equal;
30 colorbar
31 view(-30,10);
32

33 print -depsc ss semis19 heata.eps % Color
34

35 figure(102)
36

37 surf(X,Y,U)
38 colormap jet;
39 shading interp;
40 axis equal;
41 colorbar
42 view(0,90);
43

44 print -depsc ss semis19 heatb.eps

5. a. We are given the ODE:

φ ′′ − 0.4φ ′ + λφ = 0, φ(0) = 0, φ(8) = 0.

The Sturm-Liouville eigenvalue problem satisfies:

[pφ ′]′ + qφ+ λσφ = 0 or pφ ′′ + p ′φ ′ + qφ+ λσφ = 0.

We convert the ODE above into a Sturm-Liouville eigenvalue problem by choosing a function
H(x) to multiply the equation above:

Hφ ′′ − 0.4Hφ ′ + λHφ = 0.

It follows that p(x) = H(x) and p ′ = H ′ = −0.4H. Thus,

p(x) = H(x) = e−0.4x, q(x) = 0, and σ(x) = e−0.4x.

The SL problem satisfies:
d

dx

(
e−0.4x

dφ

dx

)
+ λe−0.4xφ = 0.

The characteristic polynomial is r2−0.4r+λ = (r−0.2)2+λ−0.04 = 0. The Rayleigh Quotient
readily shows that λ ≥ 0, as

λ =
−p(x)φ(x)φ ′(x)

∣∣8
0

+
∫ 8
0

(
p(x)(φ ′(x))2 − q(x)(φ(x))2

)
dx∫ 8

0 (φ(x))2σ(x)dx
≥ 0,



where φ(0) = φ(8) = 0, p(x) = σ(x) > 0, q(x) = 0, φ2(x) > 0, and (φ ′(x))2 ≥ 0.

If λ = 0, then φ ′′ − 0.4φ ′ = 0, which has the general solution, φ(x) = c1 + c2e
0.4x, so φ(0) =

c1 + c2 = 0. The other BC gives c1 + c2e
3.2 = 0, so c1 = c2 = 0, leaving only the trivial solution.

If λ− 0.04 = −α2 < 0, then r = 0.2± α, which has the solution,
φ(x) = e0.2x (c1 cosh(αx) + c2 sinh(αx)). The B.C. φ(0) = c1 = 0. The other B.C. gives
φ(8) = c2e

1.6 sinh(8α) = 0, which implies c2 = 0, leaving only the trivial solution.

If λ = 0.04, then r = 0.2, which has the solution, φ(x) = e0.2x (c1 + c2x). The B.C. φ(0) =
c1 = 0. The other B.C. gives φ(8) = c25e

1.6 = 0, which implies c2 = 0, leaving only the trivial
solution.

If λ− 0.04 = α2 > 0, then r = 0.2± iα, which has the solution,
φ(x) = e0.2x (c1 cos(αx) + c2 sin(αx)). The B.C. φ(0) = c1 = 0. The other B.C. gives φ(8) =
c2e

1.6 sin(8α) = 0, which has nontrivial solutions if αn = nπ
8 . It follows that the eigenvalues

and eigenfunctions are:

λn = 0.04 +
(nπ

8

)2
, with φn(x) = e0.2x sin

(nπx
8

)
, n = 1, 2, 3, ...

The orthogonality relation for this SL problem with eigenfunctions φm(x) and φn(x), m 6= n,
is: ∫ 8

0
φm(x)φn(x)e−0.4x dx = 0.

b. A one-dimensional rod for heat conduction with convection is given by:

∂u

∂t
=
∂2u

∂x2
− 0.4

∂u

∂x
, 0 < x < 8, t > 0,

with B.C.’s and I.C.’s:

u(0, t) = 0, u(8, t) = 0, and u(x, 0) = f(x).

From separation of variables with u(x, t) = φ(x)h(t), we have:

φh ′ = φ ′′h− 0.4φ ′h or
h ′

h
=
φ ′′ − 0.4φ ′

φ
= −λ.

This gives the t-equation with its solution:

h ′ + λh = 0, so h(t) = ce−λt.

The x-equation and its B.C.’s are given by:

φ ′′ − 0.4φ ′ + λφ = 0 with φ(0) = 0 and φ(8) = 0,

which is the same Sturm-Liouville problem from Part a.

c. Having solved the t-equation and the SL problem in Parts a and b, we have the product
solution:

un(x, t) = Ane
−(0.04+n2π2/64)te0.2x sin

(nπx
8

)
.



We apply the Superposition Principle to obtain the solution:

u(x, t) =

∞∑
n=1

Ane
−(0.04+n2π2/64)te0.2x sin

(nπx
8

)
.

The initial condition gives:

u(x, 0) = f(x) =
∞∑
n=1

Ane
0.2x sin

(nπx
8

)
.

We use the orthogonality relationship to find the Fourier coefficients:

An =

∫ 8
0 f(x)

(
e0.2x sin

(
nπx
8

))
e−0.4x dx∫ 8

0

(
e0.2x sin

(
nπx
8

))2
e−0.4x dx

=
1

4

∫ 8

0
f(x)e−0.2x sin

(nπx
8

)
dx.

6. a. The operator L is self-adjoint if∫ 6

0
[uL(v)− vL(u)]dx = 0.

Assume that the functions, u(x) and v(x), satisfy the B.C.’s, u(0) = 0, u ′′(0) = 0, u(6) = 0,
u ′′(6) = 0, v(0) = 0, v ′′(0) = 0, v(6) = 0, and v ′′(6) = 0. We integrate by parts:∫ 6

0

(
uv ′′′′ − vu ′′′′

)
dx =

(
uv ′′′ − vu ′′′

)∣∣6
0
−
∫ 6

0

(
u ′v ′′′ − v ′u ′′′

)
dx.

Since u(0) = u(6) = v(0) = v(6) = 0 (fixed ends), the function evaluations vanish at the
endpoints. Integration by parts a second time gives:

−
∫ 6

0

(
u ′v ′′′ − v ′u ′′′

)
dx = −

(
u ′v ′′ − v ′u ′′

)∣∣6
0

+

∫ 6

0

(
u ′′v ′′ − v ′′u ′′

)
dx = 0,

because the last integral vanishes and we have the B.C.’s u ′′(0) = u ′′(6) = v ′′(0) = v ′′(6) = 0
(free force). This shows that L is self-adjoint.

b. From Part a, if L(φm) = λmφm and L(φn) = λnφn, then∫ 6

0
(φmL(φn)− φnL(φm)) dx =

∫ 6

0
(λnφmφn − λmφnφm) dx = (λn − λm)

∫ 6

0
φmφn dx = 0,

which shows orthogonality of distinct eigenvalues. Suppose that λ is a complex eigenvalue with
complex eigenfunction φ, then L(φ)− λφ = 0. Taking the complex conjugate, we have

L(φ)− λφ = L(φ̄)− λ̄φ̄ = L(φ̄)− λ̄φ̄ = 0,

so λ̄ is an eigenvalue and φ̄ is its corresponding eigenfunction. However, the orthogonality
relationship gives:

(λ− λ̄)

∫ 6

0
φφ̄ dx = 0,

which since φφ̄ = |φ|2 > 0 for an eigenfunction, implies that λ − λ̄ = 0, so λ is real, which
contradicts the assumption of λ being complex.



From the expression related to the Rayleigh Quotient, we show that the eigenvalues are non-
negative:

λ =

∫ 6
0 φL [φ] dx∫ 6

0 φ
2dx

=

∫ 6
0

(
d
dx

(
φ · d

3φ
dx3
− dφ

dx ·
d2φ
dx2

)
+
(
d2φ
dx2

)2)
dx∫ 6

0 φ
2dx

=

(
φ · d

3φ
dx3
− dφ

dx ·
d2φ
dx2

)∣∣∣6
0

+
∫ 6
0

(
d2φ
dx2

)2
dx∫ 6

0 φ
2dx

≥ 0,

since the BCs give
(
φ · d

3φ
dx3
− dφ

dx ·
d2φ
dx2

)∣∣∣6
0

= 0,
(
d2φ
dx2

)2
≥ 0, and φ2 > 0. It follows that λ ≥ 0.

The SL problem with B.C.’s satisfies:

L(φ)− λφ = φ ′′′′ − λφ = 0, φ(0) = 0, φ ′′(0) = 0, φ(6) = 0, and φ ′′(6) = 0.

The characteristic equation is r4 − λ = 0, so we consider the various cases of real λ.

If λ = 0, then integrating 4 times gives:

φ(x) =
c1x

3

6
+
c2x

2

2
+ c3x+ c4.

We have φ(0) = c4 = 0 and φ ′′(0) = c2 = 0. Since φ ′′(6) = 6c1 = 0, c1 = 0. Finally,
φ(6) = 6c3 = 0 or c3 = 0, leaving only the trivial solution, so λ = 0 is not an eigenvalue.

From above it follows that λ must be positive, so assume λ = α4 > 0. The characteristic
equation satisfies:

r4 − α4 = (r2 + α2)(r2 − α2) = (r + iα)(r − iα)(r + α)(r − α) = 0.

This gives the general solution:

φ(x) = c1 cosh(αx) + c2 sinh(αx) + c3 cos(αx) + c4 sin(αx).

The BCs φ(0) = 0 and φ ′′(0) = 0 give:

c1 + c3 = 0 and α2(c1 − c3) = 0, so c1 = c3 = 0.

The BCs φ(6) = 0 and φ ′′(6) = 0 give:

c2 sinh(6α) + c4 sin(6α) = 0 and α2(c2 sinh(6α)− c4 sin(6α)) = 0.

It follows that c2 sinh(6α) = 0 or c2 = 0 and c4 sin(6α) = 0, which leads to non-trivial solutions
if 6αn = nπ, n = 1, 2, ... It follows that the eigenvalues and corresponding eigenfunctions are
given by:

λn = α4
n =

(nπ
6

)4
and φn(x) = sin

(nπx
6

)
for n = 1, 2, ...

The orthogonality relationship satisfies:∫ 6

0
sin
(mπx

6

)
sin
(nπx

6

)
dx = 0, n 6= m.



c. The displacement of a uniform thin beam in a medium that resists motion satisfies:

∂4u

∂x4
= −∂

2u

∂t2
− 0.2

∂u

∂t
, 0 < x < 6, t > 0.

with the B.C.’s:

u(0, t) = 0, uxx(0, t) = 0, u(6, t) = 0, uxx(6, t) = 0.

and I.C.’s, u(x, 0) = 0, and the initial velocity:

∂u

∂t
(x, 0) =


0, x ∈ (0, 1),
2, x ∈ (1, 2),
0, x ∈ (2, 6).

We use separation of variables with u(x, t) = φ(x)h(t), so

φ ′′′′h = −φ(h ′′ − 0.2h ′) or
φ ′′′′

φ
= −h

′′ − 0.2h ′

h
= λ.

This gives the SL problem from Part b, φ(4) − λφ = 0 with BCs φ(0) = 0, φ′′(0) = 0, φ(6) = 0,
φ′′(6) = 0. which has the eigenvalues and eigenfunctions:

λn = α4
n =

(nπ
6

)4
with φn(x) = sin

(nπx
6

)
, n = 1, 2, ...

The t-equation becomes:
hn
′′ + 0.2hn

′ + λnhn = 0,

which has the characteristic equation:

r2 + 0.2r + λn = 0, so r = −0.1±
√

0.01− λn.

Since the smallest eigenvalue is λ1 =
(
π
6

)4 ≈ 0.0752 > 0.01, we have 0.01 − λn < 0, which
implies that r is complex. Thus, if we define ωn =

√
λn − 0.01, then we write the solution:

hn(t) = e−0.1t (An cos(ωnt) +Bn sin(ωnt)) , n = 1, 2, ...

The Superposition Principle gives:

u(x, t) =

∞∑
n=1

e−0.1t
(
An cos(ωnt) +Bn sin(ωnt)

)
sin
(nπx

6

)
.

From the I.C., u(x, 0) = 0, it follows that An = 0. The velocity satisfies:

ut(x, t) =
∞∑
n=1

Bne
−0.1t

(
ωn cos(ωnt)− 0.1 sin(ωnt)

)
sin
(nπx

6

)
.

The other I.C. gives:

∂u

∂t
(x, 0) = F (x) =

∞∑
n=1

Bnωn sin
(nπx

6

)
.



Multiplying by φn(x), integrating from x = 0 to 6, and using orthogonality gives:∫ 6

0
F (x) sin

(nπx
6

)
dx =

∫ 6

0
Bnωn sin2

(nπx
6

)
dx = 3Bnωn.

It follows that the Fourier coefficient is:

Bn =
1

3ωn

∫ 6

0
F (x) sin

(nπx
6

)
dx =

2

3ωn

∫ 2

1
sin
(nπx

6

)
dx,

= − 4

nπωn
cos
(nπx

6

)∣∣∣∣2
1

=
4
(

cos
(
nπ
6

)
− cos

(
nπ
3

) )
nπωn

.

Thus, the solution to this problem is:

u(x, t) =

∞∑
n=1

4
(

cos
(
nπ
6

)
− cos

(
nπ
3

) )
nπωn

e−0.1t sin(ωnt) sin
(nπx

6

)
,

where ωn =
√(

nπ
6

)4 − 0.01.

d. With 50 terms in the series solution of u(x, t), the figure below shows the displacement of
the beam at times t = 0, 1, 2, 5, 10, and 20.

0 1 2 3 4 5 6
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Below is a surface plot for u(x, t) with x ∈ [0, 6] and t ∈ [0, 50].
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1 %format compact;
2 L = 6;
3 NptsX=151; % number of x pts
4 NptsT=151; % number of t pts
5 Nf=200; % number of Fourier terms
6 x=linspace(0,L,NptsX);
7 t=linspace(0,20,NptsT);
8 [X,T]=meshgrid(x,t);
9 k = 0.2;

10

11 fs=8;
12 figure(1)
13 clf
14

15 b=zeros(1,Nf);
16 U=zeros(NptsT,NptsX);
17 for n=1:Nf
18 w(n) = sqrt((n*pi/L)ˆ4-0.01);
19 b(n) = (4*(cos(n*pi/L)-cos(2*n*pi/L)))/(n*pi*w(n));
20 Un = b(n)*exp(-(k/2)*T).*sin(w(n)*T).*sin(n*pi*X/L);
21 U = U + Un;
22 end
23 set(gca,'FontSize',[fs]);
24 surf(X,T,U);
25 shading interp
26 colormap(jet)
27 fontlabs = 'Times New Roman';
28 xlabel('$x$','Fontsize',fs,'FontName',fontlabs,'interpreter','latex');
29 ylabel('$t$','Fontsize',fs,'FontName',fontlabs,'interpreter','latex');
30 zlabel('$u(x,t)$','Fontsize',fs,'FontName',fontlabs,'interpreter','latex');
31 %axis tight
32 colorbar
33 view([-75 20])
34 set(gca,'FontSize',12); % Axis tick font size
35 print -depsc beam plots20.eps
36

37 figure(2)
38

39 xx=linspace(0,6,200);
40 V1=zeros(1,200);
41 for n=1:Nf
42 Vn = b(n)*exp(-(k/2)*1)*sin(w(n)*1).*sin(n*pi*xx/L);
43 V1 = V1 + Vn;
44 end
45 V2=zeros(1,200);
46 for n=1:Nf
47 Vn = b(n)*exp(-(k/2)*2)*sin(w(n)*2).*sin(n*pi*xx/L);
48 V2 = V2 + Vn;
49 end
50 V5=zeros(1,200);
51 for n=1:Nf
52 Vn = b(n)*exp(-(k/2)*5)*sin(w(n)*5).*sin(n*pi*xx/L);
53 V5 = V5 + Vn;
54 end
55 V10=zeros(1,200);
56 for n=1:Nf
57 Vn = b(n)*exp(-(k/2)*10)*sin(w(n)*10).*sin(n*pi*xx/L);
58 V10 = V10 + Vn;
59 end



60 V20=zeros(1,200);
61 for n=1:Nf
62 Vn = b(n)*exp(-(k/2)*20)*sin(w(n)*20).*sin(n*pi*xx/L);
63 V20 = V20 + Vn;
64 end
65 plot(xx,V1,'b-','LineWidth',1.5);
66 hold on
67 plot(xx,V2,'m-','LineWidth',1.5);
68 plot(xx,V5,'r-','LineWidth',1.5);
69 plot(xx,V10,'k-','LineWidth',1.5);
70 plot(xx,V20,'-','color',[0,0.6,0],'LineWidth',1.5);
71 grid;
72 h = legend('$t = 1$','$t = 2$','$t = 5$','$t = 10$',...
73 '$t = 20$','Location','northwest');
74 set(h,'Interpreter','latex')
75 h.FontSize = 10;
76 xlim([0,6]);
77 ylim([-0.4,1.4]);
78 set(gca,'FontSize',12); % Axis tick font size
79

80 print -depsc beam plotbs20.eps


