\qquad

1. Consider the heat equation in an insulated one-dimensional rod given by:

$$
\frac{\partial u}{\partial t}=0.5 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<3, \quad t>0
$$

with the boundary conditions and initial condition:

$$
\frac{\partial u}{\partial x}(0, t)=0, \quad \frac{\partial u}{\partial x}(3, t)=0, \quad u(x, 0)=6-4 \cos (\pi x)
$$

Solve this initial-boundary value problem. Find the eigenvalues and eigenfunctions for the associated Sturm-Liouville problem. What is the temperature distribution in the rod as $t \rightarrow \infty$?

Let $u(x, t)=\phi(x) h(t)$, then $\phi h^{\prime}=0.5 h \phi^{\prime \prime}$ or:

$$
\frac{h^{\prime}}{0.5 h}=\frac{\phi^{\prime \prime}}{\phi}=-\lambda .
$$

The time equation is $h^{\prime}=-0.5 \lambda h$, so

$$
h=c \cdot e^{-0.5 \lambda t} .
$$

The S-L problem is

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \phi^{\prime}(0)=0, \quad \phi^{\prime}(3)=0 .
$$

This is a Neumann problem, which has been shown before. The results are:
(i) If $\lambda<0$, then only the trivial solution exists.
(ii) $\lambda_{0}=0$ is an eigenvalue with eigenfunction $\phi_{0}(x)=1$.
(iii) If $\lambda>0$, then take $\lambda=\alpha^{2}$. It follows that $\phi(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)$. With $\phi^{\prime}(0)=0$, then $c_{2}=0$. From $\phi^{\prime}(3)=0$, we have $\alpha=\frac{n \pi}{3}$. It follows that the eigenvalues are $\lambda_{n}=\frac{n^{2} \pi^{2}}{9}$ with eigenfunctions $\phi_{n}(x)=\cos \left(\frac{n \pi x}{3}\right), \quad n=1,2, \ldots$
By the superposition principle,

$$
u(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n} e^{-0.5\left(\frac{n^{2} \pi^{2}}{9}\right) t} \cos \left(\frac{n \pi x}{3}\right) .
$$

The initial condition gives:

$$
u(x, 0)=6-4 \cos (\pi x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{3}\right) .
$$

By orthogonality of the eigenfunctions, we obtain:

$$
A_{0}=6, \quad A_{3}=-4, \quad A_{n}=0 \quad \text { for } n \neq 0,3 .
$$

Thus,

$$
u(x, t)=6-4 e^{-0.5 \pi^{2} t} \cos (\pi x) .
$$

As $t \rightarrow \infty$,

$$
\lim _{t \rightarrow \infty} u(x, t)=A_{0}=6 .
$$

2. a. Find the eigenvalues and eigenfunctions for the Sturm-Liouville problem:

$$
u^{\prime \prime}+\lambda u=0, \quad u(0)=0, \quad u^{\prime}(4)=0 .
$$

b. Use the eigenfunctions from above to represent the function

$$
f(x)= \begin{cases}3, & 0 \leq x<2 \\ 0, & 2 \leq x \leq 4\end{cases}
$$

and find the Fourier coefficients.
c. To what value does the Fourier series converge at $x=1$? At $x=2$? At $x=-\frac{3}{2}$?
a. Have shown before in class and HW that $\lambda \leq 0$ only leads to the trivial solution for this eigenvalue problem, so not an eigenvalue. (Can solve BVP directly or use Raleigh Quotient.)

So let $\lambda=\alpha^{2}>0$, then $u(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)$. From the BC, $u(0)=0$, we have $c_{1}=0$. The other BC gives:

$$
u^{\prime}(4)=c_{2} \alpha \cos (4 \alpha)=0, \quad \text { so } \quad \alpha_{n}=\frac{\left(n-\frac{1}{2}\right) \pi}{4}, \quad n=1,2, \ldots
$$

It follows that we have eigenvectors and corresponding eigenfunctions:

$$
\lambda_{n}=\frac{\left(n-\frac{1}{2}\right)^{2} \pi^{2}}{16} \quad \text { and } \quad u_{n}(x)=\sin \left(\frac{\left(n-\frac{1}{2}\right) \pi x}{4}\right), \quad n=1,2, \ldots
$$

b. The Fourier series is given by:

$$
f(x) \sim \sum_{n=1}^{\infty} A_{n} \sin \left(\frac{\left(n-\frac{1}{2}\right) \pi x}{4}\right) .
$$

The Fourier coefficients are given by:

$$
\begin{aligned}
A_{n} & =\frac{2}{4} \int_{0}^{4} f(x) \sin \left(\frac{\left(n-\frac{1}{2}\right) \pi x}{4}\right)=\frac{3}{2} \int_{0}^{2} \sin \left(\frac{\left(n-\frac{1}{2}\right) \pi x}{4}\right) \\
& =-\left.\frac{12}{(2 n-1) \pi} \cos \left(\frac{\left(n-\frac{1}{2}\right) \pi x}{4}\right)\right|_{0} ^{2}=\frac{12}{(2 n-1) \pi}\left(1-\cos \left(\frac{\left(n-\frac{1}{2}\right) \pi x}{4}\right)\right)
\end{aligned}
$$

c. At $x=1$, the Fourier series converges to 3 (a point of continuity).

At $x=2$, the Fourier series converges to $\frac{3}{2}$ (midpoint between 3 and 0 , the jump discontinuity).

At $x=-\frac{3}{2}$, the Fourier series converges to -3 . (Fourier series is the odd periodic extension).
3. Find the steady-state temperature distribution for the Figure below (assuming the faces are insulated). The region is a semi-circular region satisfying Laplace's equation:

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}}\left(\frac{\partial^{2} u}{\partial \theta^{2}}\right)=0,
$$

where the edge along the x-axis is fixed at 0 . Along the semi-circular edge, we have:

$$
u(2, \theta)=g(\theta)= \begin{cases}6, & 0<\theta<\frac{\pi}{2} \\ 0, & \frac{\pi}{2}<\theta<\pi\end{cases}
$$

Soln: Let $u(r, \theta)=h(r) \phi(\theta)$, then

$$
\begin{gathered}
\frac{\phi}{r} \frac{d}{d r}\left(r h^{\prime}\right)+\frac{h}{r^{2}} \phi^{\prime \prime}=0 \\
\frac{r}{h}\left(r h^{\prime}\right)^{\prime}=-\frac{\phi^{\prime}}{\phi}=\lambda
\end{gathered}
$$

The SL problem is
$\phi^{\prime \prime}+\lambda \phi=0, \quad$ with $\mathrm{BCs} \quad \phi(0)=0, \phi(\pi)=0$.
This is the Dirichlet problem worked in class many times. The eigenvalues are positive. The eigenvalues and corresponding eigenfunctions are given by:

$$
\lambda_{n}=n^{2} \quad \text { and } \quad \phi_{n}(\theta)=\sin (n \theta) .
$$

The r-equation is expanded into the Cauchy-Euler ODE with solutions $h(r)=r^{\mu}$:

$$
r^{2} h^{\prime \prime}+r h^{\prime}-n^{2} h=0,
$$

which has the auxiliary equation $\mu(\mu-1)+\mu-n^{2}=\mu^{2}-n^{2}=0$, so $\mu= \pm n$. It follows that:

$$
h_{n}(r)=c_{1} r^{n}+c_{2} r^{-n} .
$$

The BC at the origin of solutions being bounded implies that $c_{2}=0$.
The superposition principle gives:

$$
u(r, \theta)=\sum_{n=1}^{\infty} b_{n} r^{n} \sin (n \theta) .
$$

The other boundary condition and orthogonality give
$u(2, \theta)=\sum_{n=1}^{\infty} b_{n} 2^{n} \sin (n \theta)=g(\theta), \quad$ so $\quad b_{n} 2^{n} \int_{0}^{\pi} \sin ^{2}(n \theta) d \theta=\int_{0}^{\pi} g(\theta) \sin (n \theta) d \theta=6 \int_{0}^{\frac{\pi}{2}} \sin (n \theta) d \theta$.
It follows that

$$
b_{n}=\frac{12}{2^{n} \pi} \int_{0}^{\frac{\pi}{2}} \sin (n \theta) d \theta=\frac{12}{n \pi 2^{n}}\left(-\left.\cos (n \theta)\right|_{0} ^{\frac{\pi}{2}}\right)=\frac{12}{n \pi 2^{n}}\left(1-\cos \left(\frac{n \pi}{2}\right)\right) .
$$

4. Consider the eigenvalue problem given by:

$$
\begin{equation*}
\phi^{\prime \prime}-2 \phi^{\prime}+(1+\lambda) \phi=0 \tag{1}
\end{equation*}
$$

with boundary conditions $\phi(0)=0$ and $\phi(2)=0$.
a. This problem becomes a Sturm-Liouville problem if it has the form:

$$
\frac{d}{d x}\left(p(x) \frac{d \phi}{d x}\right)+q(x) \phi+\lambda \sigma(x) \phi=0 .
$$

Make Eqn. (1) into a Sturm-Liouville problem, giving the appropriate functions $p(x), q(x)$, and $\sigma(x)$ for this transformation.
b. Find the eigenvalues and eigenfunctions for this Sturm-Liouville problem. Be sure to check the different cases when $\lambda<0, \lambda=0$, and $\lambda>0$ for eigenfunctions.
c. Let a smooth piecewise continuous function $f(x)$ be represented by a Fourier series:

$$
f(x) \sim \sum_{n=1}^{\infty} b_{n} \phi_{n}(x) .
$$

Find an expression for b_{n} using the appropriate orthogonality relationship from the SturmLiouville problem.
a. Expand the SL problem, multiply (11) by $H(x)$, and compare terms.

$$
\left.\begin{array}{c}
p \phi^{\prime \prime}+p^{\prime} \phi+q \phi+\lambda \sigma \phi=0, \\
H \phi^{\prime \prime}-2 H \phi^{\prime}+H \phi+\lambda H \phi=0,
\end{array}\right\} \begin{gathered}
p(x)=H(x)=q(x)=\sigma(x) \\
\therefore \frac{d}{d x}\left(e^{-2 x} \frac{d \phi}{d x}\right)+(1-\lambda) e^{-2 x} \phi=0
\end{gathered} \begin{gathered}
p^{\prime}=H^{\prime}=-2 H, \quad \text { so } \quad H(x)=e^{-2 x} \\
p(x)=q(x)=\sigma(x)=e^{-2 x} .
\end{gathered}
$$

b. The SL Problem is written: $e^{-2 x}\left(\phi^{\prime \prime}-2 \phi^{\prime}+(1-\lambda) \phi\right)=0$ with BCs $\phi(0)=0=\phi(2)$, which has the characteristic equation, $r^{2}-2 r+1+\lambda=0$. This has roots: $r=1 \pm \sqrt{\lambda}$. There are 3 cases:
Case(i): $\lambda=-\alpha^{2}<0, \quad$ so $\quad \phi(x)=e^{x}\left(c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x)\right), \quad$ with $\phi(0)=c_{1}=0 \quad$ and $\quad \phi(2)=e^{2} c_{2} \sinh (2 \alpha)=0, \quad$ so $\quad c_{2}=0, \quad$ i.e., trivial solution.
Case(ii) : $\lambda=0, \quad$ so $\quad \phi(x)=\left(c_{1}+c_{2} x\right) e^{x}, \quad$ with $\quad \phi(0)=c_{1}=0$,
$\phi(2)=2 c_{2} e^{2}=0, \quad$ so $\quad c_{2}=0, \quad$ i.e., trivial solution.
Case(iii) : $\lambda=\alpha^{2}>0, \quad$ so $\quad \phi(x)=e^{x}\left(c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)\right), \quad$ with $\quad \phi(0)=c_{1}=0$, $\phi(2)=e^{2} c_{2} \sin (2 \alpha), \quad$ giving $\quad \alpha_{n}=\frac{n \pi}{2}$, e.v. $\lambda_{n}=\frac{n^{2} \pi^{2}}{4} \quad$ and \quad e.f. $\phi_{n}(x)=e^{x} \sin \left(\frac{n \pi x}{2}\right)$.
c. The Fourier representation is:

$$
f(x) \sim \sum_{n=1}^{\infty} b_{n} e^{x} \sin \left(\frac{n \pi x}{2}\right) .
$$

With orthogonality, we have:

$$
b_{n}=\frac{\int_{0}^{2} f(x) e^{x} \sin \left(\frac{n \pi x}{2}\right) e^{-2 x} d x}{\int_{0}^{2}\left(e^{x} \sin \left(\frac{n \pi x}{2}\right)\right)^{2} e^{-2 x} d x}=\int_{0}^{2} f(x) e^{-x} \sin \left(\frac{n \pi x}{2}\right) d x
$$

5. a. Consider the Sturm-Liouville problem:

$$
\begin{aligned}
\frac{d}{d \rho}\left(\rho^{2} \frac{d u}{d \rho}\right)+\lambda \rho^{2} u & =0, & & 1<\rho<4, \\
u(1) & =0, & & u(4)=0 .
\end{aligned}
$$

You are given that when $\lambda=-\alpha^{2}<0$, two linearly independent solutions are

$$
u_{1}(\rho)=\frac{\sinh (\alpha(\rho-1))}{\rho} \quad \text { and } \quad u_{2}(\rho)=\frac{\cosh (\alpha(\rho-1))}{\rho},
$$

and when $\lambda=\gamma^{2}>0$, two linearly independent solutions are

$$
u_{1}(\rho)=\frac{\sin (\gamma(\rho-1))}{\rho} \quad \text { and } \quad u_{2}(\rho)=\frac{\cos (\gamma(\rho-1))}{\rho} .
$$

(You are not to show this, but must solve for $\lambda=0$.) Find the eigenvalues and eigenfunctions, and state the orthogonality relationship.
b. Let $\phi_{n}(\rho)$ be the eigenfunctions in Part a. Find the generalized Fourier coefficients b_{n} for

$$
f(\rho)=\frac{5}{\rho}=\sum_{n=1}^{\infty} b_{n} \phi_{n}(\rho) .
$$

a. The SL problem has no complex eigenvalues, so examine the 3 real cases:

Case(i) : $\lambda=-\alpha^{2}<0, \quad$ so $\quad u(\rho)=c_{1} \frac{\sinh (\alpha(\rho-1))}{\rho}+c_{2} \frac{\cosh (\alpha(\rho-1))}{\rho}, \quad$ with $\quad u(1)=c_{2}=0$, $u(4)=\frac{c_{1}}{4} \sinh (3 \alpha)=0, \quad$ so $\quad c_{1}=0, \quad$ i.e., trivial solution.
Case(ii) : $\lambda=0, \quad$ so integrating the ODE gives $\rho^{2} \frac{d u}{d \rho}=c_{1}$. Integrating again, $u(\rho)=-\frac{c_{1}}{\rho}+c_{2}$. BCs imply, $u(1)=-c_{1}+c_{2}=0 \quad$ and $\quad u(4)=-\frac{c_{1}}{4}+c_{2}=0$, so $\quad c_{1}=c_{2}=0, \quad$ i.e., trivial solution.
Case(iii) : $\lambda=\alpha^{2}>0, \quad$ so $\quad u(\rho)=c_{1} \frac{\sin (\alpha(\rho-1))}{\rho}+c_{2} \frac{\cos (\alpha(\rho-1))}{\rho}, \quad$ with $\quad u(1)=c_{2}=0$, $u(4)=\frac{c_{1}}{4} \sin (3 \alpha)=0, \quad$ giving $\quad \alpha_{n}=\frac{n \pi}{3}, \quad n=1,2, \ldots$
Thus, we have eigenvalues $\lambda_{n}=\frac{n^{2} \pi^{2}}{9}$ with eigenfunctions:

$$
u_{n}(\rho)=\frac{\sin \left(\frac{n \pi(\rho-1)}{3}\right)}{\rho}, n=1,2, \ldots
$$

The orthogonality relationship satisfies:

$$
\left\langle u_{n}, u_{m}\right\rangle=\int_{1}^{4} \frac{\sin \left(\frac{n \pi(\rho-1)}{3}\right)}{\rho} \frac{\sin \left(\frac{m \pi(\rho-1)}{3}\right)}{\rho} \cdot \rho^{2} d \rho= \begin{cases}0, & m \neq n \\ \frac{3}{2}, & m=n\end{cases}
$$

b. With the eigenfunctions above, we find the generalized Fourier coefficients:

$$
f(\rho)=\frac{5}{\rho} \sim \sum_{n=1}^{\infty} b_{n} \frac{\sin \left(\frac{n \pi(\rho-1)}{3}\right)}{\rho} .
$$

We multiply both sides above by $\frac{\sin \left(\frac{m \pi(\rho-1)}{3}\right)}{\rho} \rho^{2}$, including the weighting factor ρ^{2}, then integrate from 1 to 4 . It follows that:

$$
\begin{aligned}
\int_{1}^{4} \frac{5}{\rho} \frac{\sin \left(\frac{m \pi(\rho-1)}{3}\right)}{\rho} \rho^{2} d \rho & =\int_{1}^{4} \sum_{n=1}^{\infty} b_{n} \frac{\sin \left(\frac{n \pi(\rho-1)}{3}\right)}{\rho} \frac{\sin \left(\frac{m \pi(\rho-1)}{3}\right)}{\rho} \rho^{2} d \rho \\
& =\int_{1}^{4} b_{m} \frac{\sin ^{2}\left(\frac{m \pi(\rho-1)}{3}\right)}{\rho^{2}} \rho^{2} d \rho=\frac{3 b_{m}}{2} .
\end{aligned}
$$

from the orthogonality relationship, so:

$$
b_{m}=\frac{2}{3} \int_{1}^{4} 5 \sin \left(\frac{m \pi(\rho-1)}{3}\right) d \rho=-\left.\frac{10}{3} \frac{3}{m \pi}\left(\cos \left(\frac{m \pi(\rho-1)}{3}\right)\right)\right|_{1} ^{4}=\frac{10}{m \pi}\left(1-(-1)^{m}\right)
$$

