
Math 531 Exam 1 Name

1. Consider the heat equation in an insulated one-dimensional rod given by:

∂u

∂t
= 0.5

∂2u

∂x2
, 0 < x < 3, t > 0,

with the boundary conditions and initial condition:

∂u

∂x
(0, t) = 0,

∂u

∂x
(3, t) = 0, u(x, 0) = 6− 4 cos(πx).

Solve this initial-boundary value problem. Find the eigenvalues and eigenfunctions for the
associated Sturm-Liouville problem. What is the temperature distribution in the rod as t→∞?

Let u(x, t) = φ(x)h(t), then φh′ = 0.5hφ′′ or:

h′

0.5h
=
φ′′

φ
= −λ.

The time equation is h′ = −0.5λh, so

h = c · e−0.5λt.

The S-L problem is
φ′′ + λφ = 0, φ′(0) = 0, φ′(3) = 0.

This is a Neumann problem, which has been shown before. The results are:
(i) If λ < 0, then only the trivial solution exists.
(ii) λ0 = 0 is an eigenvalue with eigenfunction φ0(x) = 1.
(iii) If λ > 0, then take λ = α2. It follows that φ(x) = c1 cos(αx) + c2 sin(αx). With φ′(0) = 0,

then c2 = 0. From φ′(3) = 0, we have α = nπ
3 . It follows that the eigenvalues are λn = n2π2

9
with eigenfunctions φn(x) = cos

(
nπx
3

)
, n = 1, 2, ...

By the superposition principle,

u(x, t) = A0 +
∞∑
n=1

Ane
−0.5

(
n2π2

9

)
t
cos
(nπx

3

)
.

The initial condition gives:

u(x, 0) = 6− 4 cos(πx) = A0 +
∞∑
n=1

An cos
(nπx

3

)
.

By orthogonality of the eigenfunctions, we obtain:

A0 = 6, A3 = −4, An = 0 for n 6= 0, 3.

Thus,
u(x, t) = 6− 4e−0.5π

2t cos(πx).

As t→∞,
lim
t→∞

u(x, t) = A0 = 6.



2. a. Find the eigenvalues and eigenfunctions for the Sturm-Liouville problem:

u′′ + λu = 0, u(0) = 0, u ′(4) = 0.

b. Use the eigenfunctions from above to represent the function

f(x) =

{
3, 0 ≤ x < 2,
0, 2 ≤ x ≤ 4.

and find the Fourier coefficients.

c. To what value does the Fourier series converge at x = 1? At x = 2? At x = −3
2?

a. Have shown before in class and HW that λ ≤ 0 only leads to the trivial solution for this
eigenvalue problem, so not an eigenvalue. (Can solve BVP directly or use Raleigh Quotient.)

So let λ = α2 > 0, then u(x) = c1 cos(αx) + c2 sin(αx). From the BC, u(0) = 0, we have c1 = 0.
The other BC gives:

u′(4) = c2α cos(4α) = 0, so αn =
(n− 1

2)π

4
, n = 1, 2, ...

It follows that we have eigenvectors and corresponding eigenfunctions:

λn =
(n− 1

2)2π2

16
and un(x) = sin

(
(n− 1

2)πx

4

)
, n = 1, 2, ...

b. The Fourier series is given by:

f(x) ∼
∞∑
n=1

An sin

(
(n− 1

2)πx

4

)
.

The Fourier coefficients are given by:

An =
2

4

∫ 4

0
f(x) sin

(
(n− 1

2)πx

4

)
=

3

2

∫ 2

0
sin

(
(n− 1

2)πx

4

)

= − 12

(2n− 1)π
cos

(
(n− 1

2)πx

4

)∣∣∣∣∣
2

0

=
12

(2n− 1)π

(
1− cos

(
(n− 1

2)πx

4

))

c. At x = 1, the Fourier series converges to 3 (a point of continuity).

At x = 2, the Fourier series converges to 3
2 (midpoint between 3 and 0, the jump discontinuity).

At x = −3
2 , the Fourier series converges to −3. (Fourier series is the odd periodic extension).



3. Find the steady-state temperature distribution for the Figure below (assuming the faces are
insulated). The region is a semi-circular region satisfying Laplace’s equation:

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

(
∂2u

∂θ2

)
= 0,

where the edge along the x-axis is fixed at 0. Along the semi-circular edge, we have:

u(2, θ) = g(θ) =

{
6, 0 < θ < π

2 ,
0, π

2 < θ < π.
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u(r, π) = 0 u(r, 0) = 0

Soln: Let u(r, θ) = h(r)φ(θ), then

φ

r

d

dr
(rh′) +

h

r2
φ′′ = 0,

r

h
(rh′)′ = −φ

′

φ
= λ.

The SL problem is

φ′′ + λφ = 0, with BCs φ(0) = 0, φ(π) = 0.

This is the Dirichlet problem worked in class
many times. The eigenvalues are positive. The
eigenvalues and corresponding eigenfunctions
are given by:

λn = n2 and φn(θ) = sin(nθ).

The r-equation is expanded into the Cauchy-Euler ODE with solutions h(r) = rµ:

r2h′′ + rh′ − n2h = 0,

which has the auxiliary equation µ(µ− 1) + µ− n2 = µ2 − n2 = 0, so µ = ±n. It follows that:

hn(r) = c1r
n + c2r

−n.

The BC at the origin of solutions being bounded implies that c2 = 0.

The superposition principle gives:

u(r, θ) =
∞∑
n=1

bnr
n sin(nθ).

The other boundary condition and orthogonality give

u(2, θ) =

∞∑
n=1

bn2n sin(nθ) = g(θ), so bn2n
∫ π

0
sin2(nθ)dθ =

∫ π

0
g(θ) sin(nθ)dθ = 6

∫ π
2

0
sin(nθ)dθ.

It follows that

bn =
12

2nπ

∫ π
2

0
sin(nθ)dθ =

12

nπ2n

(
− cos(nθ)

∣∣∣π2
0

)
=

12

nπ2n

(
1− cos

(nπ
2

))
.



4. Consider the eigenvalue problem given by:

φ ′′ − 2φ ′ + (1 + λ)φ = 0, (1)

with boundary conditions φ(0) = 0 and φ(2) = 0.

a. This problem becomes a Sturm-Liouville problem if it has the form:

d

dx

(
p(x)

dφ

dx

)
+ q(x)φ+ λσ(x)φ = 0.

Make Eqn. (1) into a Sturm-Liouville problem, giving the appropriate functions p(x), q(x), and
σ(x) for this transformation.

b. Find the eigenvalues and eigenfunctions for this Sturm-Liouville problem. Be sure to check
the different cases when λ < 0, λ = 0, and λ > 0 for eigenfunctions.

c. Let a smooth piecewise continuous function f(x) be represented by a Fourier series:

f(x) ∼
∞∑
n=1

bnφn(x).

Find an expression for bn using the appropriate orthogonality relationship from the Sturm-
Liouville problem.

a. Expand the SL problem, multiply (1) by H(x), and compare terms.

pφ′′ + p′φ+ qφ+ λσφ = 0,
Hφ′′ − 2Hφ′ +Hφ+ λHφ = 0,

}
p(x) = H(x) = q(x) = σ(x)

p′ = H ′ = −2H, so H(x) = e−2x

∴ d
dx

(
e−2x dφdx

)
+ (1− λ)e−2xφ = 0 p(x) = q(x) = σ(x) = e−2x.

b. The SL Problem is written: e−2x (φ′′ − 2φ′ + (1− λ)φ) = 0 with BCs φ(0) = 0 = φ(2), which
has the characteristic equation, r2 − 2r + 1 + λ = 0. This has roots: r = 1±

√
λ. There are 3

cases:
Case(i) : λ = −α2 < 0, so φ(x) = ex (c1 cosh(αx) + c2 sinh(αx)) , with
φ(0) = c1 = 0 and φ(2) = e2c2 sinh(2α) = 0, so c2 = 0, i.e., trivial solution.

Case(ii) : λ = 0, so φ(x) = (c1 + c2x)ex, with φ(0) = c1 = 0,
φ(2) = 2c2e

2 = 0, so c2 = 0, i.e., trivial solution.
Case(iii) : λ = α2 > 0, so φ(x) = ex (c1 cos(αx) + c2 sin(αx)) , with φ(0) = c1 = 0,

φ(2) = e2c2 sin(2α), giving αn = nπ
2 , e.v. λn = n2π2

4 and e.f. φn(x) = ex sin
(
nπx
2

)
.

c. The Fourier representation is:

f(x) ∼
∞∑
n=1

bne
x sin

(nπx
2

)
.

With orthogonality, we have:

bn =

∫ 2
0 f(x)ex sin

(
nπx
2

)
e−2xdx∫ 2

0

(
ex sin

(
nπx
2

))2
e−2xdx

=

∫ 2

0
f(x)e−x sin

(nπx
2

)
dx.



5. a. Consider the Sturm-Liouville problem:

d

dρ

(
ρ2
du

dρ

)
+ λρ2u = 0, 1 < ρ < 4,

u(1) = 0, u(4) = 0.

You are given that when λ = −α2 < 0, two linearly independent solutions are

u1(ρ) =
sinh(α(ρ− 1))

ρ
and u2(ρ) =

cosh(α(ρ− 1))

ρ
,

and when λ = γ2 > 0, two linearly independent solutions are

u1(ρ) =
sin(γ(ρ− 1))

ρ
and u2(ρ) =

cos(γ(ρ− 1))

ρ
.

(You are not to show this, but must solve for λ = 0.) Find the eigenvalues and eigenfunctions,
and state the orthogonality relationship.

b. Let φn(ρ) be the eigenfunctions in Part a. Find the generalized Fourier coefficients bn for

f(ρ) =
5

ρ
=

∞∑
n=1

bnφn(ρ).

a. The SL problem has no complex eigenvalues, so examine the 3 real cases:

Case(i) : λ = −α2 < 0, so u(ρ) = c1
sinh(α(ρ−1))

ρ + c2
cosh(α(ρ−1))

ρ , with u(1) = c2 = 0,

u(4) = c1
4 sinh(3α) = 0, so c1 = 0, i.e., trivial solution.

Case(ii) : λ = 0, so integrating the ODE gives ρ2 dudρ = c1. Integrating again,

u(ρ) = − c1
ρ + c2. BCs imply, u(1) = −c1 + c2 = 0 and u(4) = − c1

4 + c2 = 0,

so c1 = c2 = 0, i.e., trivial solution.

Case(iii) : λ = α2 > 0, so u(ρ) = c1
sin(α(ρ−1))

ρ + c2
cos(α(ρ−1))

ρ , with u(1) = c2 = 0,

u(4) = c1
4 sin(3α) = 0, giving αn = nπ

3 , n = 1, 2, ....

Thus, we have eigenvalues λn = n2π2

9 with eigenfunctions:

un(ρ) =
sin
(
nπ(ρ−1)

3

)
ρ

, n = 1, 2, ...

The orthogonality relationship satisfies:

〈un, um〉 =

∫ 4

1

sin
(
nπ(ρ−1)

3

)
ρ

sin
(
mπ(ρ−1)

3

)
ρ

· ρ2 dρ =

{
0, m 6= n
3
2 , m = n



b. With the eigenfunctions above, we find the generalized Fourier coefficients:

f(ρ) =
5

ρ
∼
∞∑
n=1

bn
sin
(
nπ(ρ−1)

3

)
ρ

.

We multiply both sides above by
sin

(
mπ(ρ−1)

3

)
ρ ρ2, including the weighting factor ρ2, then integrate

from 1 to 4. It follows that:

∫ 4

1

5

ρ

sin
(
mπ(ρ−1)

3

)
ρ

ρ2 dρ =

∫ 4

1

∞∑
n=1

bn
sin
(
nπ(ρ−1)

3

)
ρ

sin
(
mπ(ρ−1)

3

)
ρ

ρ2 dρ

=

∫ 4

1
bm

sin2
(
mπ(ρ−1)

3

)
ρ2

ρ2 dρ =
3bm

2
.

from the orthogonality relationship, so:

bm =
2

3

∫ 4

1
5 sin

(
mπ(ρ− 1)

3

)
dρ = −10

3

3

mπ

(
cos

(
mπ(ρ− 1)

3

))∣∣∣∣4
1

=
10

mπ
(1− (−1)m).


