1. (8pts) A classic enzymatic negative feedback model satisfies the system:

$$
\begin{aligned}
\dot{x}_{1} & =\frac{3}{1+0.2 x_{2}}-0.5 x_{1} \\
\dot{x}_{2} & =5 x_{1}-x_{2}
\end{aligned}
$$

where x_{1} is an enzyme and x_{2} is the endproduct. The equilibrium satisfies:

$$
\frac{3}{1+0.2 x_{2 e}}-0.5 x_{1 e}=0 \quad \text { and } \quad x_{2 e}=5 x_{1 e}
$$

So

$$
\frac{3}{1+x_{1 e}}=0.5 x_{1 e}, \quad \text { or } \quad x_{1 e}^{2}+x_{1 e}-6=0
$$

Thus, $x_{1 e}=2$ or -3 . However, only the positive solution makes sense, so the positive equilibrium is $\left(x_{1 e}, x_{2 e}\right)=(2,10)$.

The Jacobian for this system is:

$$
J\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
-0.5 & -\frac{0.6}{\left(1+0.2 x_{2}\right)^{2}} \\
5 & -1
\end{array}\right)
$$

At the equilibrium, the Jacobian is:

$$
J(2,10)=\left(\begin{array}{cc}
-0.5 & -\frac{1}{15} \\
5 & -1
\end{array}\right)
$$

The characteristic equation satisfies:

$$
\left|\begin{array}{cc}
-\frac{1}{2}-\lambda & -\frac{1}{15} \\
5 & -1-\lambda
\end{array}\right|=\lambda^{2}+\frac{3}{2} \lambda+\frac{5}{6}=0
$$

Thus, the eigenvalues at this equilibrium are:

$$
\lambda=-\frac{3}{4} \pm \frac{i \sqrt{39}}{12} \approx-0.75 \pm 0.5204 i
$$

which results in the local behavior near this equilibrium being a stable spiral.
Below is a phase portrait showing the trajectories of this system, spiraling toward the equilibrium at $(2,10)$.

2. (8pts) The predator-prey model (Lotka-Volterra) is given by:

$$
\begin{aligned}
& \dot{x}_{1}=0.1 x_{1}-0.05 x_{1} x_{2}, \\
& \dot{x}_{2}=0.001 x_{1} x_{2}-0.04 x_{2} .
\end{aligned}
$$

We see that x_{1} is the prey species, which grows according to Malthusian growth in the absence of the predator x_{2}. The prey species is lost due to interaction with the predator, shown by the product term $0.05 x_{1} x_{2}$. The predator needs the prey species to reproduce and grow, which is given by the term $0.001 x_{1} x_{2}$, while it dies off (radioactive decay-like term) proportional to its population.

The equilibria satisfy:

$$
0.05 x_{1 e}\left(2-x_{2 e}\right)=0 \quad \text { and } \quad 0.001 x_{2 e}\left(x_{1 e}-40\right)=0 .
$$

From the first equation, if $x_{1 e}=0$, then the second equation implies $x_{2 e}=0$. From the first equation, if $x_{2 e}=2$, then the second equation implies $x_{1 e}=40$. Thus, there are two equilibria, the extinction and coexistence equilibria:

$$
\left(x_{1 e}, x_{2 e}\right)=(0,0) \quad \text { and } \quad(40,2) .
$$

The Jacobian for this system is:

$$
J\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
0.1-0.05 x_{2} & -0.05 x_{1} \\
0.001 x_{2} & 0.001 x_{1}-0.04
\end{array}\right) .
$$

For the extinction equilibrium, $(0,0)$, the Jacobian is:

$$
J(0,0)=\left(\begin{array}{cc}
0.1 & 0 \\
0 & -0.04
\end{array}\right),
$$

which is a diagonal matrix with eigenvalues, $\lambda_{1}=0.1$ and $\lambda_{2}=-0.04$. Thus, there is a saddle point at this equilibrium.

For the cooperative equilibrium, $(40,2)$, the Jacobian is:

$$
J(40,2)=\left(\begin{array}{cc}
0 & -2 \\
0.002 & 0
\end{array}\right),
$$

which has the characteristic equation:

$$
\lambda^{2}+0.004=0, \quad \text { so } \quad \lambda= \pm i \sqrt{0.004} \approx \pm 0.063246 i
$$

Thus, there is a center at this equilibrium.
Below is a phase portrait showing the trajectories of this system, which are periodic orbits about the coexistence equilibrium. The trajectories along the axes show the saddle node at the extinction equilibrium. The violet dashed lines show the nullclines for $\dot{x}_{1}=0$, while the orange dashed lines show the nullclines for $\dot{x}_{2}=0$.

