
Spring 2022 Math 337 Lecture Linear Systems Solutions

1. (5pts) For the linear system,

ẋ =

(
0 1

−4 5

)
x, x(0) =

(
1
10

)
,

we first find the eigenvalues and eigenvectors by solving:∣∣∣∣ λ 1
−4 5 − λ

∣∣∣∣ = λ2 − 5λ+ 4 = (λ− 1)(λ− 4) = 0.

This is a companion matrix, so λ1 = 1 has the corresponding eigenvector ξ1 =

(
1
1

)
. Similarly,

λ2 = 4 has the corresponding eigenvector ξ2 =

(
1
4

)
. It follows that the general solution satisfies:

x(t) = c1

(
1
1

)
et + c2

(
1
4

)
e4t.

To satisfy the initial conditions, we solve:(
1 1
1 4

)(
c1
c2

)
=

(
1
10

)
,

which is readily solved to give c1 = −2 and c2 = 3. Thus, the unique solution to the initial value
is given by:

x(t) =

(
−2
−2

)
et +

(
3
12

)
e4t.

Since both values of λ are positive, this is an unstable node. Below is a phase portrait showing the
trajectories of this system, where the eigenvectors are shown in black.



2. (5pts) For the linear system,

ẋ =

(
−3 5
−2 −1

)
x, x(0) =

(
−2

2

)
,

we first find the eigenvalues and eigenvectors by solving:∣∣∣∣ −3 − λ 5
−2 −1 − λ

∣∣∣∣ = λ2 + 4λ+ 13 = (λ+ 2)2 + 9 = 0,

which has eigenvalues, λ = −2 ± 3i. For λ = −2 + 3i, we solve:

A− λI =

(
−1 − 3i 5

−2 1 − 3i

)
ξ1 =

(
0
0

)
, so ξ1 =

(
5

1 + 3i

) (
or

(
1 − 3i

2

))
.

It follows that

x1(t) = e−2t

(
5

1 + 3i

)(
cos(3t)+i sin(3t)

)
= e−2t

[(
5 cos(3t)

cos(3t) − 3 sin(3t)

)
+ i

(
5 sin(3t)

sin(3t) + 3 cos(3t)

)]
.

The general real solution from the real and imaginary parts satisfies:

x(t) = e−2t

[
c1

(
5 cos(3t)

cos(3t) − 3 sin(3t)

)
+ c2

(
5 sin(3t)

sin(3t) + 3 cos(3t)

)]
.

From the initial conditions, we have 5c1 = −2 or c1 = −2
5 . Also, c1 + 3c2 = 2 or c2 = 4

5 . The
unique solution to this IVP becomes:

x(t) = e−2t

(
−2 cos(3t) + 4 sin(3t)
2 cos(3t) + 2 sin(3t)

)
.

Since eigenvalues λ are complex with a negative real value, this is a stable spiral (clockwise). Below
is a phase portrait showing the trajectories of this system.



3. (6pts) For the linear system,

dx1
dt

= −2x1 + 4x2 + 2,

dx2
dt

= x1 + x2 − 4,

we find equilibria by solving: (
−2 4
1 1

)(
x1e
x2e

)
=

(
−2
4

)
.

Adding 2 times the 2nd row to the first gives, 6x2e = 6 or x2e = 1. It follows that x1e = 3, so
(x1e, x2e) = (3, 1) is the equilibrium.

Make the change of variables, z1 = x1 − x1e and z2 = x2 − x2e, then the new system becomes:(
ż1
ż2

)
=

(
−2 4
1 1

)(
z1
z2

)
.

We find the eigenvalues and eigenvectors by solving:∣∣∣∣ −2 − λ 4
1 1 − λ

∣∣∣∣ = λ2 + λ− 6 = (λ+ 3)(λ− 2) = 0,

which has eigenvalues, λ1 = −3 and λ2 = 2. For λ1 = −3, we solve:

A+ 3I =

(
1 4
1 4

)
ξ1 =

(
0
0

)
, so ξ1 =

(
4
−1

)
.

Similarly, for λ2 = 2, we solve:

A− 2I =

(
−4 4
1 −1

)
ξ2 =

(
0
0

)
, so ξ2 =

(
1
1

)
.

It follows that the general solution in the translated system satisfies:

z(t) = c1

(
4
−1

)
e−3t + c2

(
1
1

)
e2t,

so

x(t) = c1

(
4
−1

)
e−3t + c2

(
1
1

)
e2t +

(
3
1

)
.

Since λ1 < 0 < λ2, this is an saddle node. Below is a phase portrait showing the trajectories of this
system, where the eigenvectors are shown in black. The eigenvectors intersect at the equilibrium
point.




