Spring 2022 Math 337 Lecture Linear Systems Solutions

1. (5pts) For the linear system,

() o= (o)

we first find the eigenvalues and eigenvectors by solving:
‘ A1

— \2 _ — _ _ —
s == — - =0,

This is a companion matrix, so A\; = 1 has the corresponding eigenvector & = (1> Similarly,
1
Ao = 4 has the corresponding eigenvector £ = < 4>. It follows that the general solution satisfies:

z(t) = ¢ G) el + ¢y (i) et

To satisfy the initial conditions, we solve:
1 1\ () (1
1 4/ \c2) \10)°
which is readily solved to give ¢; = —2 and cp = 3. Thus, the unique solution to the initial value

is given by:
-2 3
x(t) = ( 2) et + (12) et

Since both values of A are positive, this is an unstable node. Below is a phase portrait showing the
trajectories of this system, where the eigenvectors are shown in black.
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2. (5pts) For the linear system,

(e ()

we first find the eigenvalues and eigenvectors by solving:

—-3-A 5 2 _ 9 _
‘ 9 1o\ =X +4A+13=(A+2)"+9=0,

which has eigenvalues, A = —2 £ 3i. For A = —2 + 3¢, we solve:

~1-3i 5 0 5 1-3i
A_”:< —2 1—31')51:(0)’ % g1:<1+3i> (01" ( 2 >)

It follows that

2i(t) = e (1 +5 3¢> (cos(3t)+isin(3t)) = e [(COS (3?5)(:()—8(3,3;)11(3 t)> +i <Sin(3?)sfg32)8 3 t)ﬂ .

The general real solution from the real and imaginary parts satisfies:

w(t) = [cl (cos(;f)co—sgg;)n(3t)> e (Sin(?j)si1 ggéis(?’t)ﬂ '

From the initial conditions, we have bc; = —2 or ¢; = —%. Also, c1 +3co = 2 or ¢y = %. The
unique solution to this IVP becomes:

oy (—2cos(3t) + 4sin(3t)
z(t) i < 2 cos(3t) + 2sin(3t) > '

Since eigenvalues \ are complex with a negative real value, this is a stable spiral (clockwise). Below
is a phase portrait showing the trajectories of this system.
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3. (6pts) For the linear system,

d

% = —2z1+4x2+4 2,
d

% = x1+x0 —4,

we find equilibria by solving:

-2 4\ (z1e) (-2

1 1 T2e - 4 ’
Adding 2 times the 2" row to the first gives, 6x9. = 6 or x9. = 1. It follows that z1. = 3, so
(Z1e,22¢) = (3,1) is the equilibrium.

Make the change of variables, z1 = 1 — 1. and z9 = x9 — x2¢, then the new system becomes:

Z'l o -2 4 Z1
22 o 1 1 Z9 )
We find the eigenvalues and eigenvectors by solving:

' —2—-X 4

_\2 _f = _ —
) 1_)\‘—)\ FA-6=MA+3)(A-2) =0,

which has eigenvalues, Ay = —3 and Ay = 2. For A\; = —3, we solve:

A+3I:<1 i>£1:<8>, S0 51:<_41>.

Similarly, for s = 2, we solve:

(8o = e ()

It follows that the general solution in the translated system satisfies:

() = <_41> e 4 oy G) e,
z(t) = (_41) e+ e G) et + (?) .

Since A1 < 0 < Ag, this is an saddle node. Below is a phase portrait showing the trajectories of this
system, where the eigenvectors are shown in black. The eigenvectors intersect at the equilibrium
point.
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