1. (5pts) For the linear system,

$$
\dot{\mathbf{x}}=\left(\begin{array}{rr}
0 & 1 \\
-4 & 5
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{1}{10},
$$

we first find the eigenvalues and eigenvectors by solving:

$$
\left|\begin{array}{cc}
\lambda & 1 \\
-4 & 5-\lambda
\end{array}\right|=\lambda^{2}-5 \lambda+4=(\lambda-1)(\lambda-4)=0 .
$$

This is a companion matrix, so $\lambda_{1}=1$ has the corresponding eigenvector $\xi_{1}=\binom{1}{1}$. Similarly, $\lambda_{2}=4$ has the corresponding eigenvector $\xi_{2}=\binom{1}{4}$. It follows that the general solution satisfies:

$$
x(t)=c_{1}\binom{1}{1} e^{t}+c_{2}\binom{1}{4} e^{4 t}
$$

To satisfy the initial conditions, we solve:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{1}{10},
$$

which is readily solved to give $c_{1}=-2$ and $c_{2}=3$. Thus, the unique solution to the initial value is given by:

$$
x(t)=\binom{-2}{-2} e^{t}+\binom{3}{12} e^{4 t}
$$

Since both values of λ are positive, this is an unstable node. Below is a phase portrait showing the trajectories of this system, where the eigenvectors are shown in black.

2. (5pts) For the linear system,

$$
\dot{\mathbf{x}}=\left(\begin{array}{rr}
-3 & 5 \\
-2 & -1
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{-2}{2},
$$

we first find the eigenvalues and eigenvectors by solving:

$$
\left|\begin{array}{cc}
-3-\lambda & 5 \\
-2 & -1-\lambda
\end{array}\right|=\lambda^{2}+4 \lambda+13=(\lambda+2)^{2}+9=0
$$

which has eigenvalues, $\lambda=-2 \pm 3 i$. For $\lambda=-2+3 i$, we solve:

$$
A-\lambda I=\left(\begin{array}{cc}
-1-3 i & 5 \\
-2 & 1-3 i
\end{array}\right) \xi_{1}=\binom{0}{0}, \quad \text { so } \quad \xi_{1}=\binom{5}{1+3 i} \quad\left(\text { or } \quad\binom{1-3 i}{2}\right) .
$$

It follows that
$x_{1}(t)=e^{-2 t}\binom{5}{1+3 i}(\cos (3 t)+i \sin (3 t))=e^{-2 t}\left[\binom{5 \cos (3 t)}{\cos (3 t)-3 \sin (3 t)}+i\binom{5 \sin (3 t)}{\sin (3 t)+3 \cos (3 t)}\right]$.
The general real solution from the real and imaginary parts satisfies:

$$
x(t)=e^{-2 t}\left[c_{1}\binom{5 \cos (3 t)}{\cos (3 t)-3 \sin (3 t)}+c_{2}\binom{5 \sin (3 t)}{\sin (3 t)+3 \cos (3 t)}\right] .
$$

From the initial conditions, we have $5 c_{1}=-2$ or $c_{1}=-\frac{2}{5}$. Also, $c_{1}+3 c_{2}=2$ or $c_{2}=\frac{4}{5}$. The unique solution to this IVP becomes:

$$
x(t)=e^{-2 t}\binom{-2 \cos (3 t)+4 \sin (3 t)}{2 \cos (3 t)+2 \sin (3 t)} .
$$

Since eigenvalues λ are complex with a negative real value, this is a stable spiral (clockwise). Below is a phase portrait showing the trajectories of this system.

3. (6pts) For the linear system,

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =-2 x_{1}+4 x_{2}+2, \\
\frac{d x_{2}}{d t} & =x_{1}+x_{2}-4
\end{aligned}
$$

we find equilibria by solving:

$$
\left(\begin{array}{cc}
-2 & 4 \\
1 & 1
\end{array}\right)\binom{x_{1 e}}{x_{2 e}}=\binom{-2}{4}
$$

Adding 2 times the $2^{\text {nd }}$ row to the first gives, $6 x_{2 e}=6$ or $x_{2 e}=1$. It follows that $x_{1 e}=3$, so $\left(x_{1 e}, x_{2 e}\right)=(3,1)$ is the equilibrium.

Make the change of variables, $z_{1}=x_{1}-x_{1 e}$ and $z_{2}=x_{2}-x_{2 e}$, then the new system becomes:

$$
\binom{\dot{z}_{1}}{\dot{z}_{2}}=\left(\begin{array}{cc}
-2 & 4 \\
1 & 1
\end{array}\right)\binom{z_{1}}{z_{2}} .
$$

We find the eigenvalues and eigenvectors by solving:

$$
\left|\begin{array}{cc}
-2-\lambda & 4 \\
1 & 1-\lambda
\end{array}\right|=\lambda^{2}+\lambda-6=(\lambda+3)(\lambda-2)=0
$$

which has eigenvalues, $\lambda_{1}=-3$ and $\lambda_{2}=2$. For $\lambda_{1}=-3$, we solve:

$$
A+3 I=\left(\begin{array}{ll}
1 & 4 \\
1 & 4
\end{array}\right) \xi_{1}=\binom{0}{0}, \quad \text { so } \quad \xi_{1}=\binom{4}{-1} .
$$

Similarly, for $\lambda_{2}=2$, we solve:

$$
A-2 I=\left(\begin{array}{cc}
-4 & 4 \\
1 & -1
\end{array}\right) \xi_{2}=\binom{0}{0}, \quad \text { so } \quad \xi_{2}=\binom{1}{1} .
$$

It follows that the general solution in the translated system satisfies:

$$
z(t)=c_{1}\binom{4}{-1} e^{-3 t}+c_{2}\binom{1}{1} e^{2 t}
$$

so

$$
x(t)=c_{1}\binom{4}{-1} e^{-3 t}+c_{2}\binom{1}{1} e^{2 t}+\binom{3}{1} .
$$

Since $\lambda_{1}<0<\lambda_{2}$, this is an saddle node. Below is a phase portrait showing the trajectories of this system, where the eigenvectors are shown in black. The eigenvectors intersect at the equilibrium point.

