1. (4pts) The ODE is:

$$
\frac{d y}{d t}=3 y-20 y^{2} e^{2 t} \quad \text { or } \quad \frac{d y}{d t}-3 y=-20 y^{2} e^{2 t}
$$

which is a Bernoulli equation. Thus, we substitute $u=y^{1-2}=y^{-1}$, so $\frac{d u}{d t}=-y^{-2} \frac{d y}{d t}$. Multiplying the original ODE by $-y^{-2}$ gives:

$$
\frac{d u}{d t}+3 u=20 e^{2 t}
$$

which is a linear DE with integrating factor $\mu(t)=e^{3 t}$. It follows that

$$
\frac{d}{d t}\left(e^{3 t} u\right)=20 e^{5 t}
$$

so integrating both sides gives.

$$
e^{3 t} u(t)=4 e^{5 t}+C \quad \text { or } \quad u(t)=4 e^{2 t}+C e^{-3 t} .
$$

The initial condition is $y(0)=2$, so

$$
u(0)=\frac{1}{2}=4+C \quad \text { or } \quad C=-\frac{7}{2} .
$$

It follows that:

$$
u(t)=\frac{1}{y(t)}=4 e^{2 t}-\frac{7}{2} e^{-3 t}
$$

or

$$
y=\frac{2}{8 e^{2 t}-7 e^{-3 t}} .
$$

2. (4pts) The ODE is:

$$
2 y(4-\sin (3 t)) \frac{d y}{d t}=3 y^{2} \cos (3 t)-8 t^{3}, \quad \text { or } \quad 8 t^{3}-3 y^{2} \cos (3 t)+2 y(4-\sin (3 t)) \frac{d y}{d t}=0
$$

Checking

$$
M_{y}=6 y \cos (3 t)=N_{t}
$$

which shows this is an exact ODE, so we find this comes from a function $\phi(t, y)$. We integrate $M(t, y)$ with respect to t, giving

$$
\phi(t, y)=\int\left(8 t^{3}-3 y^{2} \cos (3 t)\right) d t=2 t^{4}-y^{2} \sin (3 t)+h(y)
$$

and integrating $N(t, y)$ with respect to y gives,

$$
\phi(t, y)=\int 2 y(4-\sin (3 t)) d y=y^{2}(4-\sin (3 t))+k(t)
$$

It follows that we can take $h(y)=4 y^{2}$ and $k(t)=2 t^{4}$, so

$$
\phi(y, t)=y^{2}(4-\sin (3 t))+2 t^{4}=C \quad \text { with } \quad y(0)=2 .
$$

Thus, $C=16$, so solving for $y(t)$ gives

$$
y=\sqrt{\frac{16-2 t^{4}}{4-\sin (3 t)}}
$$

3. (8pts) a. With

$$
\frac{d P}{d t}=r P, \quad P(0)=52.4
$$

the Malthusian growth law applied to the population of the United Kingdom gives:

$$
P(t)=52.4 e^{r t} .
$$

With $P(20)=56.3$, it follows that $52.4 e^{20 r}=56.3$ or

$$
r=\frac{1}{20} \ln \left(\frac{56.3}{52.4}\right)=0.003589 .
$$

Thus, the Malthusian growth model for the United Kingdom is:

$$
P(t)=52.4 e^{0.003589 t} .
$$

b. By separation of variables, the modified Malthusian growth model

$$
\frac{d P}{d t}=(a-b t) P \quad \text { satisfies } \quad \int \frac{d P}{P}=\ln (P)=\int(a-b t) d t=a t-\frac{b t^{2}}{2}+C
$$

where $C=\ln (52.4)$. Thus, it readily follows that

$$
P(t)=P_{0} e^{a t-\frac{b t^{2}}{2}}=52.4 e^{a t-\frac{b t^{2}}{2}} .
$$

Using the logarithmic form and evaluating at $t=20$, we have

$$
\ln \left(\frac{56.3}{52.4}\right)=0.071787944=20 a-200 b
$$

Similarly, at $t=40$, we have

$$
\ln \left(\frac{59.5}{52.4}\right)=0.127069721=40 a-800 b
$$

Taking 4 times the first equation minus the second equation gives

$$
4 \ln \left(\frac{56.3}{52.4}\right)-\ln \left(\frac{59.5}{52.4}\right)=40 a \quad \text { or } \quad a=0.004002051 .
$$

Substituting and solving for b gives $b=0.0000412654$. The modified Malthusian growth model for the United Kingdom satisfies:

$$
P(t)=52.4 e^{0.0040021 t-0.000020633 t^{2}}
$$

The model predicts that in 2020 with $t=60$,

$$
P(60)=52.4 e^{0.0040021(60)-0.000020633(3600)}=61.852 .
$$

The peak population occurs when $(a-b t) P=0$, so $t=\frac{0.0040021}{0.000041265}=96.983$ or just about 2057. At that time the model predicts that the population is $P(96.983)=63.623$ million.

