1. (4pts) The initial value problem:

$$
\frac{d y}{d t}=\frac{3+2 t}{2 y}, \quad y(0)=-4
$$

is clearly separable. It follows that

$$
\int 2 y d y=\int(2 t+3) d t \quad \text { or } \quad y^{2}=t^{2}+3 t+C
$$

Solving for y gives:

$$
y(t)= \pm \sqrt{t^{2}+3 t+C}, \quad \text { so } \quad y(0)=-4= \pm \sqrt{C} \quad \text { or } \quad C=16
$$

Taking the negative branch of the square root function from the IC yields:

$$
y(t)=-\sqrt{t^{2}+3 t+16}
$$

2. (6pts) a. For $H(t)$ being the temperature of the wine and $t=0$ corresponding to 11 AM , Newton's Law of cooling and the data give the IVP:

$$
\frac{d H}{d t}=-k(H-32) \quad \text { or } \quad \frac{d H}{d t}+k H=32 k, \quad H(0)=88
$$

which is a linear problem with integrating factor, $\mu(t)=e^{k t}$. It follows that

$$
\frac{d}{d t}\left(e^{k t} H\right)=32 k e^{k t}, \quad \text { so } \quad e^{k t} H(t)=32 e^{k t}+C
$$

Thus, $H(t)=32+C e^{-k t}$. The initial condition gives $88=32+C$ or $C=56$, so

$$
H(t)=32+56 e^{-k t}
$$

From the information at $t=30$, we have

$$
H(30)=72=32+56 e^{-30 k} \quad \text { or } \quad 30 k=\ln \left(\frac{56}{40}\right) \quad \text { or } \quad k=\frac{1}{30} \ln \left(\frac{56}{40}\right) \approx 0.01122 .
$$

The wine should be served at $45^{\circ} \mathrm{F}$, so

$$
H\left(t_{s}\right)=45=32+56 e^{-0.01122 t_{s}} \quad \text { or } \quad 0.01122 t_{s}=\ln \left(\frac{56}{13}\right) \quad \text { or } \quad t_{s} \approx 130.21 \mathrm{~min}
$$

It follows that the Riesling should be ready to drink at about 1:10 PM.
b. (6 pts) The experimental study of the cooling gives the separable model:

$$
\frac{d H_{b}}{d t}=-k_{b}\left(H_{b}-32\right)^{3 / 4}
$$

Separating variables yields:

$$
\int\left(H_{b}-32\right)^{-3 / 4} d H=-k_{b} \int d t=-k_{b} t+C, \quad \text { so } \quad 4\left(H_{b}-32\right)^{1 / 4}=-k_{b} t+C .
$$

With the IC, it follows that

$$
H_{b}(t)=32+\left(\frac{C-k_{b} t}{4}\right)^{4} \quad \text { or } \quad 88-32=56=\left(\frac{C}{4}\right)^{4} \quad \text { or } \quad \frac{C}{4}=56^{1 / 4} \approx 2.7356
$$

Thus, the solution is given by

$$
H_{b}(t)=32+\left(56^{1 / 4}-\frac{k_{b} t}{4}\right)^{4}
$$

From the condition at 11:30, we have that $H_{b}(30)=72=32+\left(56^{1 / 4}-\frac{30 k_{b}}{4}\right)^{4}$ or $56^{1 / 4}-40^{1 / 4}=\frac{30 k_{b}}{4}$ or

$$
k_{b}=\frac{4\left(56^{1 / 4}-40^{1 / 4}\right)}{30} \approx 0.02943 .
$$

The wine should be served at $45^{\circ} \mathrm{F}$, so $H_{b}\left(t_{s}\right)=45=32+\left(56^{1 / 4}-\frac{0.02943 t_{s}}{4}\right)^{4}$ or $\frac{0.02943 t_{s}}{4}=$ $56^{1 / 4}-13^{1 / 4}$ or

$$
t_{s} \approx 113.74 \mathrm{~min}
$$

It follows that the Riesling should be ready to drink at about 12:54 PM.

