1. a. (4pts) According to this problem, where the tea cools according to Newton's law of cooling, we have:

$$
\frac{d T}{d t}=-k(T(t)-20), \quad T(0)=100 \quad \text { and } \quad T(2)=95
$$

To solve this problem let $z(t)=T(t)-20$, so $z(0)=80$ and $z^{\prime}(t)=T^{\prime}(t)$. By substitution it follows that

$$
\frac{d z}{d t}=-k z(t), \quad z(0)=80
$$

which has the solution

$$
z(t)=80 e^{-k t}=T(t)-20 \quad \text { or } \quad T(t)=80 e^{-k t}+20
$$

At 2 minutes

$$
T(2)=95=80 e^{-2 k}+20, \quad \text { so } \quad e^{2 k}=\frac{80}{75}=\frac{16}{15}
$$

It follows that $k=\frac{1}{2} \ln \left(\frac{16}{15}\right) \approx 0.032269$.
After 5 minutes, $T(5)=80 e^{-0.032269(5)}+20=88.08^{\circ} \mathrm{C}$, which when mixed with milk at $5^{\circ} \mathrm{C}$ gives:

$$
T_{m}(5)=88.08\left(\frac{4}{5}\right)+5\left(\frac{1}{5}\right)=71.46^{\circ} \mathrm{C}
$$

b. (4pts) If we immediately mix with the milk, then the initial condition becomes:

$$
T_{m}(0)=100\left(\frac{4}{5}\right)+5\left(\frac{1}{5}\right)=81^{\circ} \mathrm{C}
$$

so

$$
T_{m}(t)=61 e^{-k t}+20
$$

With $k=0.032269$ the cooling cup of tea satisfies the following at $t=5$:

$$
T_{m}(5)=61 e^{-0.032269(5)}+20=71.91^{\circ} \mathrm{C}
$$

Thus, after 5 minutes the tea is hotter if the milk is immediately poured in, but only by $0.45^{\circ} \mathrm{C}$.
2. (4pts) We rewrite the ODE in the form:

$$
\frac{d y}{d t}=7-0.5 y=-0.5(y-14)=f(y)
$$

With the substitution $z(t)=y(t)-14$ and $z^{\prime}(t)=y^{\prime}(t)$, we obtain the ODE

$$
z^{\prime}=-0.5 z
$$

If $y\left(t_{0}\right)=y_{0}$, so $z\left(t_{0}\right)=y_{0}-14$, then the solution of the z-equation is:

$$
z(t)=\left(y_{0}-14\right) e^{-0.5\left(t-t_{0}\right)}=y(t)-14
$$

Thus, the general solution satisfies:

$$
y(t)=14+\left(y_{0}-14\right) e^{-0.5\left(t-t_{0}\right)},
$$

The equilibria satisfy $f\left(y_{e}\right)=0$, so

$$
-0.5\left(y_{e}-14\right)=0 \quad \text { or } \quad y_{e}=14 .
$$

Since $f^{\prime}(y)=-0.5<0$, then $f^{\prime}\left(y_{e}\right)=-0.5<0$, which implies that $y_{e}=14$ is an asymptotically stable equilibrium. Below is a graph showing the phase portrait of this ODE.

3. (4pts) The ODE is given by:

$$
\frac{d y}{d t}=0.5 y^{2}-0.4 y-0.1 y^{3}=-0.1 y\left(y^{2}-5 y+4\right)=f(y) .
$$

Equilibria are found by solving $f\left(y_{e}\right)=0$, so

$$
f\left(y_{e}\right)=-0.1 y_{e}\left(y_{e}^{2}-5 y_{e}+4\right)=-0.1 y_{e}\left(y_{e}-4\right)\left(y_{e}-1\right)=0 .
$$

It follows that the equilibria are $y_{e}=0,1,4$. Taking the derivative, we find

$$
f^{\prime}(y)=y-0.4-0.3 y^{2} .
$$

For $y_{e}=0$, we have $f^{\prime}(0)=-0.4<0$, which makes this equilibrium asymptotically stable. For $y_{e}=1$, we have $f^{\prime}(1)=0.3>0$, which makes this equilibrium unstable. For $y_{e}=4$, we have $f^{\prime}(4)=-1.2<0$, which makes this equilibrium asymptotically stable. The phase portrait showing the stability of the equilibria is below.

