1. (5pts) The $3^{\text {rd }}$ order linear homogeneous ODE given by:

$$
t^{2} y^{\prime \prime \prime}-t y^{\prime \prime}+2 y^{\prime}=0
$$

uses similar techniques for solving this Cauchy-Euler problem as done in class. We attempt solutions of the form $y(t)=t^{r}$ and substitute into the original equation:
$t^{2} r(r-1)(r-2) t^{r-2}-t r(r-1) t^{r-1}+2 r t^{r-1}=t^{r-1} r((r-1)(r-2)-(r-1)+2)=t^{r-1} r\left(r^{2}-4 r+5\right)=0$.
This gives the auxiliary equation, $r\left(r^{2}-4 r+5\right)=0$, which has roots, $r=0,2 \pm i$. It follows that the real three solutions are:

$$
y_{1}(t)=1, \quad y_{2}(t)=t^{2} \cos (\ln |t|), \quad y_{3}(t)=t^{2} \sin (\ln |t|)
$$

The easiest way to determine that these solutions are linearly independent is to directly use the definition of linearly independent at three different times. That is consider

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+c_{3} y_{3}(t)
$$

at three times, then if $y\left(t_{1}\right)=0, y\left(t_{2}\right)=0$, and $y\left(t_{3}\right)=0$ imply that $c_{1}=c_{2}=c_{3}=0$. Below we show the matrix from our solutions and $t=1,2$, and 3 is nonsingular, which is equivalent to linear independence.

$$
Y=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 4 \cos (\ln (2)) & 4 \sin (\ln (2)) \\
1 & 9 \cos (\ln (3)) & 9 \sin (\ln (3))
\end{array}\right), \quad \operatorname{det}|Y| \approx 8.74
$$

so Y is invertible. There is a general theory that a generalized Wronskian being nonzero shows this linear independence, but that requires more work.
2. (5pts) The following ODE:

$$
y^{\prime \prime}+16 y=32 \csc ^{2}(4 t)
$$

is solved using the Variation of parameters method. From the homogeneous part, the characteristic equation for this problem satisfies $\lambda^{2}+16=0$, which gives $\lambda= \pm 4 i$. It follows that the solution to the homogeneous problem is:

$$
y_{h}(t)=c_{1} \cos (4 t)+c_{2} \sin (4 t)
$$

Computing the Wronskian, we see:

$$
W[\cos (4 t), \sin (4 t)]=\left|\begin{array}{cc}
\cos (4 t) & \sin (4 t) \\
-4 \sin (4 t) & 4 \cos (4 t)
\end{array}\right|=4
$$

Variation of parameters formula gives us

$$
\begin{aligned}
y_{p}(t) & =-\cos (4 t) \int^{t} \frac{32 \csc ^{2}(4 s) \sin (4 s)}{4} d s+\sin (4 t) \int^{t} \frac{32 \csc ^{2}(4 s) \cos (4 s)}{4} d s \\
& =-8 \cos (4 t) \int^{t} \csc (4 s) d s+8 \sin (4 s) \int^{t} \cot (4 s) \csc (4 s) d s \\
& =2 \cos (4 t) \ln |\csc (4 t)+\cot (4 t)|-2 \sin (4 t) \csc (4 t) \\
& =2 \cos (4 t) \ln |\csc (4 t)+\cot (4 t)|-2
\end{aligned}
$$

It follows that the general solution is given by:

$$
y(t)=c_{1} \cos (4 t)+c_{2} \sin (4 t)+2 \cos (4 t) \ln |\csc (4 t)+\cot (4 t)|-2 .
$$

3. (6 pts) a. Consider the linear homogeneous ODE given by:

$$
t y^{\prime \prime}-y^{\prime}+4 t^{3} y=0
$$

We are to show that $y_{1}(t)=\cos \left(t^{2}\right)$ and $y_{2}(t)=\sin \left(t^{2}\right)$ are solutions to this ODE. Computing the derivatives of $y_{1}(t)$ gives:

$$
y_{1}^{\prime}(t)=-2 t \sin \left(t^{2}\right), \quad y_{1}^{\prime \prime}(t)=-2 \sin \left(t^{2}\right)-4 t^{2} \cos \left(t^{2}\right) .
$$

Inserting these into our original ODE gives:

$$
-2 t \sin \left(t^{2}\right)-4 t^{3} \cos \left(t^{2}\right)+2 t \sin \left(t^{2}\right)+4 t^{3} \cos \left(t^{2}\right)=0 .
$$

Computing the derivatives of $y_{2}(t)$ gives:

$$
y_{2}^{\prime}(t)=2 t \cos \left(t^{2}\right), \quad y_{2}^{\prime \prime}(t)=2 \cos \left(t^{2}\right)-4 t^{2} \sin \left(t^{2}\right) .
$$

Inserting these into our original ODE gives:

$$
2 t \cos \left(t^{2}\right)-4 t^{3} \sin \left(t^{2}\right)-2 t \cos \left(t^{2}\right)+4 t^{3} \sin \left(t^{2}\right)=0
$$

Thus $y_{1}(t)$ and $y_{2}(t)$ are solutions.
Next find the Wronskian of these solutions, $W\left[y_{1}, y_{2}\right](t)$ and show it is nonzero to prove that these solutions form a fundamental set of solutions to this ODE. The Wronskian satisfies.

$$
W_{\left[y_{1}, y_{2}\right]}=\left|\begin{array}{cc}
\cos \left(t^{2}\right) & \sin \left(t^{2}\right) \\
-2 t \sin \left(t^{2}\right) & 2 t \cos \left(t^{2}\right)
\end{array}\right|=2 t\left(\cos ^{2}\left(t^{2}\right)+\sin ^{2}\left(t^{2}\right)\right)=2 t,
$$

which is nonzero provided $t \neq 0$. Thus, if $t \neq 0$, then y_{1} and y_{2} form a fundamental set of solutions, and the general solution has the form:

$$
y(t)=c_{1} \cos \left(t^{2}\right)+c_{2} \sin \left(t^{2}\right) .
$$

b. Consider the linear nonhomogeneous ODE given by:

$$
t y^{\prime \prime}-y^{\prime}+4 t^{3} y=8 t^{3} \quad \text { or } \quad y^{\prime \prime}-\frac{1}{t} y^{\prime}+4 t^{2} y=8 t^{2}
$$

Part a gives the solution to the homogeneous problem, so we use the Variation of Parameters method to solve this problem (Slide 24). The particular solution satisfies:

$$
\begin{aligned}
y_{p} & =-\cos \left(t^{2}\right) \int^{t} \frac{\sin \left(s^{2}\right) 8 s^{2}}{2 s} d s+\sin \left(t^{2}\right) \int^{t} \frac{\cos \left(s^{2}\right) 8 s^{2}}{2 s} d s \\
& =-4 \cos \left(t^{2}\right) \int^{t} \sin \left(s^{2}\right) s d s+4 \sin \left(t^{2}\right) \int^{t} \cos \left(s^{2}\right) s d s \\
& =-4 \cos \left(t^{2}\right)\left(\frac{-\cos \left(t^{2}\right)}{2}\right)+4 \sin \left(t^{2}\right)\left(\frac{\sin \left(t^{2}\right)}{2}\right)=2\left(\cos ^{2}\left(t^{2}\right)+\sin ^{2}\left(t^{2}\right)\right)=2 .
\end{aligned}
$$

It follows that the general solution is given by:

$$
y(t)=c_{1} \cos \left(t^{2}\right)+c_{2} \sin \left(t^{2}\right)+2
$$

