Note: For full credit you must show intermediate steps in your calculations.

1. (5pts) Consider the $3^{r d}$ order linear homogeneous ODE given by:

$$
t^{2} y^{\prime \prime \prime}-t y^{\prime \prime}+2 y^{\prime}=0
$$

Use similar techniques for solving the Cauchy-Euler problem to solve this problem. Find $\mathbf{3}$ linearly independent solutions to this problem. How would one establish that these are $\mathbf{3}$ linearly independent solutions. (Slides 3-10)
2. (5pts) Consider the following ODE:

$$
y^{\prime \prime}+16 y=32 \csc ^{2}(4 t)
$$

Find the solution to this problem. (Slide 24)
3. (6pts) a. Consider the linear homogeneous ODE given by:

$$
t y^{\prime \prime}-y^{\prime}+4 t^{3} y=0
$$

Show that $y_{1}(t)=\cos \left(t^{2}\right)$ and $y_{2}(t)=\sin \left(t^{2}\right)$ are solutions to this ODE. Find the Wronskian of these solutions, $W\left[y_{1}, y_{2}\right](t)$ and use this to prove that these solutions form a fundamental set of solutions to this ODE.
b. Consider the linear nonhomogeneous ODE given by:

$$
t y^{\prime \prime}-y^{\prime}+4 t^{3} y=8 t^{3}
$$

Use the Variation of Parameters method with Part a to solve this problem. (Slide 24)

