This page is designed to help primarily with MatLab techniques for answering the questions in Computer Activity 4. This activity is designed to learn a few new features in MatLab that are valuable for ODEs and graphic displays. Specifically, this activity introduces 3D display of simulations, and you should use the subplot command to display your 6 related graphs in Part b.
a. This Computer Activity centers around the $2^{\text {nd }}$ order ODE, which is very similar to the damped mass spring problem with a sinusoidal forcing function:

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+2 c \frac{d y}{d t}+k^{2} y=F_{0} \sin (a t), \quad y(0)=0 \quad \text { and } \quad \dot{y}(0)=0 . \tag{1}
\end{equation*}
$$

The solution of this problem is readily done with the Method of Undetermined Coefficients, and a closely related problem is solved on Slides 30-32, including the limiting behavior information.
b. Coding the function from Part a should be easy to obtain solutions at any time, t. However, the numerical solution using MatLab's ode 45 , requires first transforming the $2^{\text {nd }}$ order ODE into a system of $1^{\text {st }}$ order ODEs. Below we demonstrate this with a very important classical model, Duffing's equation, which is widely studied for chaotic behavior. It is a forced damped mass spring problem with the spring have a nonlinear stiffness. (You are welcome to explore solutions of this system.) Duffing's equation satisfies:

$$
\frac{d^{2} y}{d t^{2}}+\delta \frac{d y}{d t}+\alpha y+\beta y^{3}=\gamma \cos (\omega t)
$$

Let $y=x_{1}, \dot{x}_{1}=x_{2}$, so $y^{\prime \prime}=\ddot{x}_{1}=\dot{x}_{2}$. It readily follows that:

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\binom{x_{2}}{-\alpha x_{1}-\beta x_{1}^{3}-\delta x_{2}+\gamma \cos (\omega t)} .
$$

The MatLab fnction for this ODE is available through the hyperlink: duffing.m. This $1^{\text {st }}$ order system of ODEs is numerically solved using MatLab's ode45, which is found in the hyperlink to the MatLab script: duffing_plot.m. The result of running the script is the following graph.

The line in the script stating:
$t 1=$ [0:0.002:50];
creates a vector t_{1} with elements uniformly spaced by 0.002 from 0 to 50 (or 25001 elements). To obtain the element for $t_{1}=30$, we examine the element 15001, so $t 1$ (15001) $=30$ and we find that $y(15001,1)=-0.3118002497$, which is visible in the graph. If we want to find the maximum of $y(t)$ for $t \in[0.50]$ from the ode 45 solver, then we issue the command:
$[M, I]=\max (y(:, 1))$
which gives the maximum response of $M=1.7805791$ and the row index $I=6426$, where MatLab finds the maximum. We find that $t(6426)=12.85$ and $y(6426,1)=1.7805791$, which does appear to be the maximum in the graph above.
Part bin this Computer Activity has you producing 6 graphs for the test sound waves $a=2.85,3.0$, $3.15,3.3,3.45$, and 3.6 with two graphs on each subplot for $k^{2}=9$ and $k^{2}=12$. It is appropriate to put all these subplots as a single entity, since they are testing very similar phenomenon. Part c has you producing a 3D plot to view maximal response of different hair cells. To demonstrate these graphing techniques in MatLab we examine the displacement of a string fixed at each end (think guitar string). The string has a tone representative of its primary harmonic, but in addition there are overtones that provide a richness to the sound. The displacement of the string is described by $y(x)=\sin (n \pi x)$ for different values of n and $x \in[0,1]$. The graph below illustrates the amplitude of the string for the primary harmonic and compares it to each of its first four overtones.

A 3D graph showing the waveform of the primary harmonic and its first four overtones is shown below.

The MatLab program to produce these graphs is available through the hyperlink: harmonic_plot.m. This program should provide most of the commands you need for the graphs in this Computer Activity.

