Math 337 Review Exam 2

1. a. For x = ( g _i ) X, the characteristic equation satisfies
5—-X =1 | o - -
det 3 1_)\’—)\ —6A+8=(A—4)(A\—2) =0,

. . . . 1
so A1 = 2. With this eigenvalue, the eigenvector is vi = <

3 ) The other eigenvalue is Ay = 4,

and its associated eigenvector vo = < > It follows that the general solution is

1

1 1
x@:q<3>g+@<1>ﬁj

which is an unstable node. To satisfy the initial value problem, solve

11 a\ _ [ —1 _ _
<3 1><02>_< 2), so ¢ =15 and co=-—2.5.

This gives the unique solution
(1B e 25\ u
x<t>_<4.5>e <2.5>6‘

Below shows the phase portrait with the eigenvectors (blue), the solution to the IVP (red), and
typical solutions (rainbow).
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-5
-2

9 _
1

A -5

det 9

S0 A12 = £t. For eigenvalue A1 = ¢, the eigenvector is vi = (

<Qii)(wdﬂ+¢mm@):<

5 cos(t)
2 cos(t) + sin

mpq<

5
2

0
-1

C1
C2

(2 )

(

This gives the unique solution

3

5

5 cos(t)

() = 2 cos(t) + sin(t)

(1 ) e < 2sin() - st

which is a center. To satisfy the initial value problem, solve

_(3 SO c—§ and c—1
— 1 ) 1_5 2_5-
)+

Below shows the phase portrait with the solution to the IVP (red) and typical trajectories (rainbow),
where the trajectories travel counterclockwise.

> X, the characteristic equation satisfies

0,

_ 2
[

5
2—1

5cos(t) + 5isin(t)
2 cos(t)

Taking the real and imaginary parts gives the general solution

).

1

5

)

( 5sin(t)
2sin(t) — cos(t)
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). The complex solution is

+ sin(t) + (2sin(t) — cos(t))
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c.ForX:( 9 _4

) X, the characteristic equation satisfies

e 2

det 9 4

‘:V+6A:MA+®:&

-1

5 > The other eigenvalue is Ay = 0,

so A1 = —5. With this eigenvalue, the eigenvector is v; = <

i ) It follows that the general solution is

ﬂﬂ:q<_;>€“+@<?>,

which has a line of equilibria (A2 = 0), which are stable. To satisfy the initial value problem, solve

-1 2 ca\ [ —2 - -
( 9 1><c2>_< 8)’ so ¢ =36 and ¢y =0.8.

This gives the unique solution

Mﬂ:36<_;>6m+08<i>.

Below shows the phase portrait with the line of equilibria (black line), the solution to the IVP
(red), and typical trajectories (rainbow).

and its associated eigenvector vo = <
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d.Foer( 0

3 _4 ) X, the characteristic equation satisfies

- 1

det _8 4

‘:)\2+4)\+8:0,

1

o9 ) The complex

S0 A2 = —2%2:. For eigenvalue Ay = —2+ 21, the eigenvector is vi = (

solution is

1 iy . o (cos(2t) + isin(2t))
xa(t) = ( —2+2i ) e (cos(2t) +isin(2t)) = ( —2cos(2t) — 2sin(2t) + i(—2sin(2¢) + 2 cos(2t)) > ’

Taking the real and imaginary parts gives the general solution

Y cos(2t) ot sin(2t)
x(t) = ere™ ( —2cos(2t) — 2sin(2t) ) o™ ( —2sin(2t) + 2 cos(2t) >

which is a stable. To satisfy the initial value problem, solve

1 0 C1 o —2 _ .
(_2 2)(@)-( 6)’ so ¢ =-2 and ¢y =1.

This gives the unique solution

_ oy cos(2t) o sin(2t)
x(t) = —2¢° < —2cos(2t) — 2sin(2t) ) e < —2sin(2t) + 2 cos(2t) >

Below shows the phase portrait with the solution to the IVP (red) and typical trajectories (rainbow),
where the trajectories travels clockwise.
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-1 =1
e. For x = ( 2 > X, the characteristic equation satisfies
2 -3

-1-Xx =05

det) Ty 3o

=N 44 +4=(N+2)2=0,

so A = —2 is a repeated eigenvalue with an eigenspace of dimension 1 spanned by the eigenvector

V= ( ; ) The second solution requires solving (A + 2I)w = v (for the higher null space) or

(2 ) (0)-(2)

which has the solution w = ( (1) ) +k ( ; ) It follows that the general solution is

x(t):q(;)e_%—i-cQ[( ; )t+<é>]e‘2t,

which is a stable improper node. To satisfy the initial value problem, solve

1 1 C1 . 6 _ .
<2 0)<02>_<—2>’ so ¢cg=-1 and ¢ =7.

This gives the unique solution

)= () et|(2 ) (o))

Below shows the phase portrait with the one eigenvector (blue), the solution to the IVP (red), and

typical trajectories (rainbow).
Stable Improper Node
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f.FOI‘X:<_5 4

) x, the characteristic equation satisfies

—2—-A 1

det 5 4\

‘:)\2—2>\—3:(>\+1)()\—3):O,

1
so A1 = —1. With this eigenvalue, the eigenvector is v = < 1 ) The other eigenvalue is Ay = 3,

é ) It follows that the general solution is

x(t):cl< 1 )e_t+02<é>€3ta

which is an saddle node. To satisfy the initial value problem, solve

11 ca\_ (3 B B
(1 5)<CQ>—<4>, so ¢1 =275 and c¢o =0.25.

This gives the unique solution

x(t) = 2.75 < 1 > et 4+0.25 < é ) e,

Below shows the phase portrait with the eigenvectors (blue), the solution to the IVP (red), and
typical solutions (rainbow).

and its associated eigenvector vo = <

Saddle Node
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2. The system given by:

has the characteristic equation

—-1-A
—1

a

det 1o

‘:A2+2)\+1+a:0.

This has the eigenvalues A = —1 4+ /—a. There are clearly qualitative changes at « = —1 and
a=0.

At a = —1, the system has the eigenvalues A\; = —2 and Ay = 0. The latter, Ay = 0, leads to
the degenerate case where the system has a line of equilibria. The general solution satisfies:

e D) t)en

For a < —1, the system has a saddle node (a positive and a negative eigenvalue) with a typical
phase portrait (o« = —2) as shown below on the left. When o = —1, there is the degenerate case
with a line of equilibria and all solutions converging to that line (1 = —xz2). This is shown in
the phase portrait below on the right
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a < —1, Saddle Node

o =

—1, Line of Equilibria

For —1 < a < 0, the system has a stable node (A\; < A\ < 0) with a typical phase portrait
( = —0.25) as shown below on the left. When a = 0, there is a stable improper node with
both eigenvalues, A = —1. This is shown in the phase portrait on the right.
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a = 0, Stable Improper Node

—1 < a <0, Stable Node

Finally, for a > 0, the eigenvalues have complex values with negative real parts, which results in a

stable spiral. The phase portrait is below.

Stable Spiral
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3. a. First, find the equilibrium for:

d:L‘1

—xr1 — 4wy + 6,

so solve

—2.

10 or 9. = 2 and x1. =

Thus, 5x9,



Make the change of variables, z1(t) = x1(t) + 2 and 25(t) = x2(t) — 2. The DE for z(¢) is
. ( -1 -4 )
z= zZ

1 -1
_;f/\ ‘:/\2+2>\+5:(>\+1)Q+4:0.

This has the characteristic equation

—-1-A

det 1

For the eigenvalue A\ = —1 + 24, there is the

)

It follows that the eigenvalues are A2 = —1 % 2i.

. 4 .
eigenvector vi = ( 9 ), so the complex solution is

(

The general solution for this problem is

4
—24

4 cos(2t) 4 4isin(2t)

21 (1) ) e (cos(2t) +isin(2t)) = 2sin(2t) — 2i cos(2t)

(1) = 4 cos(2t) 4ot 4sin(2 n -2
x(t) = ae 2sin(2t) e —2cos(2 2 )
We solve the IVP, so
. 4 0 461 . 7
<0=a(o)re( ) (2)-(2) « (22)-(0)
It follows that ¢ = % and co = 0, so
7e~t [ 4cos(2t) —2
x(t) =] < 2sin(2t) ) T\ 2 )

b. The phase portrait shows a stable counterclockwise spiral attracted to an equilibrium at (—2,2).
The black trajectory satisfies the initial conditions.
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4. a. From the information, we write the rate
of change in amounts, A;(t) and Ax(t).
The rate of change in amount is concentra-
tion times flow rate.

dA;
dt

= amount enter — amount leave.

For Tank 1, the amount entering is f1q; and
f3co, while the amount leaving is fyc1. Sim-
ilar expressions give the equation for Tank 2. The concentration equations follow by simply dividing
the amount equations by the appropriate volumes.

With the data the amount equations are

dA
dTl = 03-8+04-c3—0.7-c,
dA
dT2 = 02-154+02-¢; —0.4-co.

Dividing by the volumes gives the concentration equations

dey T3
- = - 1+ ——co+ —
dt 2000 " 5002 " 250
dCQ 1 1 + 3
— = ——C— —-Cy+ ——.
dt 5001 250 2" 100
The equilibria are found first by solving:
7 1 3
O N
2000 ¢ 500 250”
L1 3
———cC —Ce = —.
500 ¢ 250 % 100

It follows that c¢j. = 10.8 g/1, while co. = 12.9 g/1. This gives the equilibrium solution, which will
be the asymptotic limit for the concentrations.

We make a change of variables z1(t) = ¢1(t) — 10.8 and 29(t) = co(t) — 12.9. The homogeneous

equation, z = Az, is
Z\ _ ( —0.0035 0.002 z1
20 ) 0.002  —0.004 2o )

The characteristic equation is

—0.0035 — A 0.002 2 B
det 0.002 0.004 — X ’ = A"+ 0.0075\ 4+ 0.00001 = 0,
which gives Ay = —0.0057656 with its associated eigenvector v; = < . 113278 > and Ay =

1.13278
1

ri(t) ) _ 1 —0.0057656t 113278 '\ _o.0017344¢ 10.8
< (t) > - ( ~1.13278 ) € e 1 ‘ T\ 120 )

—0.0017344 with its associated eigenvector vy = < > This results in the general solution



which is a stable node. The solution to the IVP satisfies

1 1.13278 ct\ _(2-108\ [ —88
—1.13278 1 o )\ 3-129 ) \ —-9.9 )’

which gives ¢; = 1.05752 and co = —8.70206. It follows that the unique solution to the IVP is

zi(t) ) _ 105752\ 0007656t | ( —9-85754 \ _o.00i73aae [ 10.8
xo(t) —1.19794 —8.70206 129 -
This solution clearly shows that the trajectory converges asymptotically to the equilibrium solution

as expected.

b. The phase portrait shows a stable node attracted to an equilibrium at (10.8,12.9). The black
trajectory satisfies the initial conditions. The eigenvectors are labeled and shown in blue.

Stable Node

5. The predator-prey model is given by:

dH
il 0.1H — 0.0005H? — 0.016HP = fi(H,P),
dpP

o= 0.005HP —0.2P = fo(H,P).

The equilibria satisfy:
H.(0.1 —0.0006H, — 0.016P.) = 0,
P.(0.005H, —0.2) = 0.

One equilibrium is (He, P.) = (0,0), the extinction equilibrium. When P, = 0, then there is
another equilibrium at H, = 200, the carrying capacity. Finally, there is a third equilibrium with



0.005H. — 0.2 =0 and 0.1 —0.0005H, — 0.016 P, = 0. The first equation gives H, = 40, which gives
P, =5 in the second equation. Thus, there is a coexistence equilibrium, (H,, P.) = (40, 5).

As we did in class, we use Taylor’s theorem to linearize this system about the equilibria (finding
the Jacobian matrix). If h(t) = H(t) — H. and p(t) = P(t) — P., then the linearized system can
be written:

( i > [ PGt OnGeR) ( h > [ 01—0001H, —0.016P.  —0.016H, < h )

p Ofa(He.Pe)  Ofa(He.Pe) p 0.005P, 0.005H, — 0.2 p)
oh op

The linear system about (He, P.) = (0,0) is

=% ) ()

which has eigenvalues A\; = —0.2 with associated eigenvector v; = < (1) > and Ay = 0.1 with
associated eigenvector vo = < (1) > This is a saddle node at the extinction equilibrium. The

general linear solution is given by

(58) =o($)emea (i)

Thus, if there are both predators and prey, then the solution moves away from extinction (unstable).

The linear system about (H., P.) = (200,0) (carrying capacity of prey) is

(5= 3) (),

which has eigenvalues Ay = —0.1 with associated eigenvector v; = < (1) > and Ay = 0.8 with
. . 32 - . s
associated eigenvector vo = 9 | This is a saddle node at this equilibrium. The general

linear solution is given by

()0 (3)ren( 5)e

Thus, if there are both predators and prey near the carrying capacity, then the solution moves away
from this equilibrium (unstable).

The linear system about (He, P.) = (40, 5) (coexistence) is
h\ [ —0.02 —0.64 h
p )\ 0.025 0 p )

—-0.02-X -0.64
0.025 —-A

The characteristic equation is

det ’ ‘ = A2 40.02) + 0.016 = 0,



which has eigenvalues A2 = —0.01 £ 0.1261¢. Let w = 0.1261 then for Ay = —0.01 + 7w, the
0.64
—0.01 — dw

( ZEQ > - Cle_0'0”< —0.013656@?))8&3&1(1(@) > g0 ( —0.01 s?ﬁiiii)nﬁwj)cos(wt) > '

This is a stable spiral, so all solutions of this model spiral into the coexistence equilibrium,
(He, P.) = (40,5).

b. The phase portrait shows equilibria at (0, 0) (saddle), (250, 0) (saddle), and (40, 5) (stable spiral).
The black trajectory satisfies the initial condition, (H(0), P(0)) = (2,1). The nullclines for H =0
are shown with blue dotted lines, and the nullclines for P = 0 are shown with red dotted lines.

associated eigenvector is vi = < ), which leads to the general solution
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6. a. The competition model is given by the system of differential equations:

d
—;tl — 0321 — 0.00522 — 0.009z172 = g1(z1,72),
i 0.1z9 — 0.002525 — 0.002x122 = ga(z1, z2).

The equilibria are found by solving:
g1(T1e,72¢) = 71¢(0.3 — 0.00521, — 0.00972,) = O,
g2(T1e, T2¢) = 290(0.1 —0.002529, — 0.00221.) = O.

This system has 4 equilibria. The trivial or extinction equilibrium is obvious, (z1e, z2:) = (0,0).
When one of the populations is zero, then the other can go to its carrying capacity. Thus, when
T9. = 0, the equation 0.3 — 0.005x1, = 0 gives the carrying capacity of 1 with the equilibrium



(Z1e, x2¢) = (60,0). Similarly, when z1. = 0, the equation 0.1 — 0.0025x9. = 0 gives the carrying
capacity of xg with the equilibrium (z1¢,22.) = (0,40). The coexistence equilibrium satisfies

0.005x1¢ + 0.00922, = 0.3 and 0.0025x2, + 0.00221, = 0.1,
which gives (z1¢, x2.) =~ (27.273,18.182).

As we did in the previous problem, we linearize and find the Jacobian matrix (using Taylor’s
theorem). If y1(t) = x1(t) — z1. and y2(t) = x2(t) — 2., then the linearized system can be written:

891(33167126) 891(33167126)

yl _ 8y1h 8y2 U1
Y2 092(%1e,72¢)  992(T1e,%2¢e) Y2
oy1 Oy2
< i ) _ 0.3 — 0.01z1, — 0.009z9, —0.00921, < n >
Y2 —0.002x9, 0.1 — 0.005x9., — 0.002x1, Y2

The linear system about (x1¢, z2.) = (0,0) is
()= ) ()
i) 0 0.1 Y2 ’
which has eigenvalues A\; = 0.1 with associated eigenvector v; = < (1) > and Ay = 0.3 with asso-

1

0
general linear solution is given by

(1) -0 (3)en

Thus, if there are any individuals of either species, then the solution moves away from extinction
(unstable).

ciated eigenvector vo = ( ) This is an unstable node at the extinction equilibrium. The

The linear system about (z1e, x2.) = (60,0) is
g\ [ =03 —054\ [ u
3)2 N 0 —0.02 Y2 ’

which has eigenvalues A\; = —0.3 with associated eigenvector vi; = ( 1 > and Ay = —0.02 with

0

27
—14
The general linear solution is given by

(283) -0 (4)ew oo B}

Thus, near this equilibrium all solutions are attracted, leading to extinction of species 5.

associated eigenvector vo = < ) . This is a stable node at this carrying capacity equilibrium.

The linear system about (x1¢,x2.) = (0,40) is

Z]l . —0.06 0 Y1
v )\ —0.08 —0.1 ya )’



which has eigenvalues \; = —0.1 with associated eigenvector vi = ( (1) ) and Ay = —0.06 with

associated eigenvector vy = ( 9 > . This is a stable node at this carrying capacity equilibrium.

The general linear solution is given by

(50 (2)ewrsn )

Thus, near this equilibrium all solutions are attracted, leading to extinction of species ;.

The linear system about (z1¢, z2.) = (27.273,18.182) is

i\ [ —0.13636 —0.24545 n
go )~ \ —0.03636 —0.04545 ys )’

which has eigenvalues Ay = —0.19575 with associated eigenvector vi = < 0 2i195 > and Ay =
0.013932 with associated eigenvector vy = < 0 611232 > This is a saddle node at this coexis-

tence equilibrium. The general linear solution is given by

yl(t) _ 1 —0.19575¢ 1 0.013932¢
< ya(t) ) - < 0.24195 ) © el _oei232 )° '

Thus, near this equilibrium the solutions split and go away from the coexistence equilibrium.
Depending on initial conditions the solution will eventually go toward one of the carrying capacity
equilibria, leaving one species at carrying capacity and the other species extinct.

b. The phase portrait shows equilibria at (0,0) (unstable node), (60,0) (stable node), (0,40) (stable
node), and ((27.27, 18.18)) (saddle node). The nullclines for #; = 0 are shown with blue dotted lines,
and the nullclines for @9 = 0 are shown with red dotted lines. Typical solutions are shown for the 4
regions separated by the nullclines. All solutions starting in the region including the origin or the
one opposite the origin begin by approaching the saddle node (coexistence equilibrium). However,
once they cross into one of the other 2 regions, these solutions approach carrying capacity of either
x1 or x2, depending on initial conditions. This system results in competitive exclusion.
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