
Math 337 Review Exam 2

1. a. For ẋ =

(
5 −1
3 1

)
x, the characteristic equation satisfies

det

∣∣∣∣ 5− λ −1
3 1− λ

∣∣∣∣ = λ2 − 6λ+ 8 = (λ− 4)(λ− 2) = 0,

so λ1 = 2. With this eigenvalue, the eigenvector is v1 =

(
1
3

)
. The other eigenvalue is λ2 = 4,

and its associated eigenvector v2 =

(
1
1

)
. It follows that the general solution is

x(t) = c1

(
1
3

)
e2t + c2

(
1
1

)
e4t,

which is an unstable node. To satisfy the initial value problem, solve(
1 1
3 1

)(
c1
c2

)
=

(
−1

2

)
, so c1 = 1.5 and c2 = −2.5.

This gives the unique solution

x(t) =

(
1.5
4.5

)
e2t −

(
2.5
2.5

)
e4t.

Below shows the phase portrait with the eigenvectors (blue), the solution to the IVP (red), and
typical solutions (rainbow).



b. For ẋ =

(
2 −5
1 −2

)
x, the characteristic equation satisfies

det

∣∣∣∣ 2− λ −5
1 −2− λ

∣∣∣∣ = λ2 + 1 = 0,

so λ1,2 = ±i. For eigenvalue λ1 = i, the eigenvector is v1 =

(
5

2− i

)
. The complex solution is

x1(t) =

(
5

2− i

)
(cos(t) + i sin(t)) =

(
5 cos(t) + 5i sin(t)

2 cos(t) + sin(t) + i(2 sin(t)− cos(t))

)
.

Taking the real and imaginary parts gives the general solution

x(t) = c1

(
5 cos(t)

2 cos(t) + sin(t)

)
+ c2

(
5 sin(t)

2 sin(t)− cos(t)

)
,

which is a center. To satisfy the initial value problem, solve(
5 0
2 −1

)(
c1
c2

)
=

(
3
1

)
, so c1 =

3

5
and c2 =

1

5
.

This gives the unique solution

x(t) =
3

5

(
5 cos(t)

2 cos(t) + sin(t)

)
+

1

5

(
5 sin(t)

2 sin(t)− cos(t)

)
,

Below shows the phase portrait with the solution to the IVP (red) and typical trajectories (rainbow),
where the trajectories travel counterclockwise.



c. For ẋ =

(
−1 2

2 −4

)
x, the characteristic equation satisfies

det

∣∣∣∣ −1− λ 2
2 −4− λ

∣∣∣∣ = λ2 + 5λ = λ(λ+ 5) = 0,

so λ1 = −5. With this eigenvalue, the eigenvector is v1 =

(
−1

2

)
. The other eigenvalue is λ2 = 0,

and its associated eigenvector v2 =

(
2
1

)
. It follows that the general solution is

x(t) = c1

(
−1

2

)
e−5t + c2

(
2
1

)
,

which has a line of equilibria (λ2 = 0), which are stable. To satisfy the initial value problem, solve(
−1 2

2 1

)(
c1
c2

)
=

(
−2

8

)
, so c1 = 3.6 and c2 = 0.8.

This gives the unique solution

x(t) = 3.6

(
−1

2

)
e−5t + 0.8

(
2
1

)
.

Below shows the phase portrait with the line of equilibria (black line), the solution to the IVP
(red), and typical trajectories (rainbow).



d. For ẋ =

(
0 1
−8 −4

)
x, the characteristic equation satisfies

det

∣∣∣∣ −λ 1
−8 −4− λ

∣∣∣∣ = λ2 + 4λ+ 8 = 0,

so λ1,2 = −2±2i. For eigenvalue λ1 = −2 + 2i, the eigenvector is v1 =

(
1

−2 + 2i

)
. The complex

solution is

x1(t) =

(
1

−2 + 2i

)
e−2t(cos(2t)+i sin(2t)) = e−2t

(
(cos(2t) + i sin(2t))

−2 cos(2t)− 2 sin(2t) + i(−2 sin(2t) + 2 cos(2t))

)
.

Taking the real and imaginary parts gives the general solution

x(t) = c1e
−2t

(
cos(2t)

−2 cos(2t)− 2 sin(2t)

)
+ c2e

−2t

(
sin(2t)

−2 sin(2t) + 2 cos(2t)

)
,

which is a stable. To satisfy the initial value problem, solve(
1 0
−2 2

)(
c1
c2

)
=

(
−2

6

)
, so c1 = −2 and c2 = 1.

This gives the unique solution

x(t) = −2e−2t

(
cos(2t)

−2 cos(2t)− 2 sin(2t)

)
+ e−2t

(
sin(2t)

−2 sin(2t) + 2 cos(2t)

)
,

Below shows the phase portrait with the solution to the IVP (red) and typical trajectories (rainbow),
where the trajectories travels clockwise.



e. For ẋ =

(
−1 −1

2

2 −3

)
x, the characteristic equation satisfies

det

∣∣∣∣ −1− λ −0.5
2 −3− λ

∣∣∣∣ = λ2 + 4λ+ 4 = (λ+ 2)2 = 0,

so λ = −2 is a repeated eigenvalue with an eigenspace of dimension 1 spanned by the eigenvector

v =

(
1
2

)
. The second solution requires solving (A + 2I)w = v (for the higher null space) or

(
1 −0.5
2 −1

)(
w1

w2

)
=

(
1
2

)
,

which has the solution w =

(
1
0

)
+ k

(
1
2

)
. It follows that the general solution is

x(t) = c1

(
1
2

)
e−2t + c2

[(
1
2

)
t+

(
1
0

)]
e−2t,

which is a stable improper node. To satisfy the initial value problem, solve(
1 1
2 0

)(
c1
c2

)
=

(
6
−2

)
, so c1 = −1 and c2 = 7.

This gives the unique solution

x(t) = −
(

1
2

)
e−2t + 7

[(
1
2

)
t+

(
1
0

)]
e−2t.

Below shows the phase portrait with the one eigenvector (blue), the solution to the IVP (red), and
typical trajectories (rainbow).



f. For ẋ =

(
−2 1
−5 4

)
x, the characteristic equation satisfies

det

∣∣∣∣ −2− λ 1
−5 4− λ

∣∣∣∣ = λ2 − 2λ− 3 = (λ+ 1)(λ− 3) = 0,

so λ1 = −1. With this eigenvalue, the eigenvector is v1 =

(
1
1

)
. The other eigenvalue is λ2 = 3,

and its associated eigenvector v2 =

(
1
5

)
. It follows that the general solution is

x(t) = c1

(
1
1

)
e−t + c2

(
1
5

)
e3t,

which is an saddle node. To satisfy the initial value problem, solve(
1 1
1 5

)(
c1
c2

)
=

(
3
4

)
, so c1 = 2.75 and c2 = 0.25.

This gives the unique solution

x(t) = 2.75

(
1
1

)
e−t + 0.25

(
1
5

)
e3t.

Below shows the phase portrait with the eigenvectors (blue), the solution to the IVP (red), and
typical solutions (rainbow).



2. The system given by:

ẋ =

(
−1 α
−1 −1

)
x

has the characteristic equation

det

∣∣∣∣ −1− λ α
−1 −1− λ

∣∣∣∣ = λ2 + 2λ+ 1 + α = 0.

This has the eigenvalues λ = −1 ±
√
−α. There are clearly qualitative changes at α = −1 and

α = 0.
At α = −1, the system has the eigenvalues λ1 = −2 and λ2 = 0. The latter, λ2 = 0, leads to

the degenerate case where the system has a line of equilibria. The general solution satisfies:

x(t) = c1

(
1
−1

)
+ c2

(
1
1

)
e−2t.

For α < −1, the system has a saddle node (a positive and a negative eigenvalue) with a typical
phase portrait (α = −2) as shown below on the left. When α = −1, there is the degenerate case
with a line of equilibria and all solutions converging to that line (x1 = −x2). This is shown in
the phase portrait below on the right

α < −1, Saddle Node α = −1, Line of Equilibria

For −1 < α < 0, the system has a stable node (λ1 < λ2 < 0) with a typical phase portrait
(α = −0.25) as shown below on the left. When α = 0, there is a stable improper node with
both eigenvalues, λ = −1. This is shown in the phase portrait on the right.



−1 < α < 0, Stable Node α = 0, Stable Improper Node

Finally, for α > 0, the eigenvalues have complex values with negative real parts, which results in a
stable spiral. The phase portrait is below.

α > 0, Stable Spiral

3. a. First, find the equilibrium for:

dx1
dt

= −x1 − 4x2 + 6,

dx2
dt

= x1 − x2 + 4,

so solve

x1e + 4x2e = 6,

x1e − x2e = −4.

Thus, 5x2e = 10 or x2e = 2 and x1e = −2.



Make the change of variables, z1(t) = x1(t) + 2 and z2(t) = x2(t)− 2. The DE for z(t) is

ż =

(
−1 −4

1 −1

)
z.

This has the characteristic equation

det

∣∣∣∣ −1− λ −4
1 −1− λ

∣∣∣∣ = λ2 + 2λ+ 5 = (λ+ 1)2 + 4 = 0.

It follows that the eigenvalues are λ1,2 = −1 ± 2i. For the eigenvalue λ1 = −1 + 2i, there is the

eigenvector v1 =

(
4
−2i

)
, so the complex solution is

z1(t) =

(
4
−2i

)
e−t(cos(2t) + i sin(2t)) = e−t

(
4 cos(2t) + 4i sin(2t)
2 sin(2t)− 2i cos(2t)

)
.

The general solution for this problem is

x(t) = c1e
−t

(
4 cos(2t)
2 sin(2t)

)
+ c2e

−t

(
4 sin(2t)
−2 cos(2t)

)
+

(
−2

2

)
.

We solve the IVP, so

x(0) = c1

(
4
0

)
+ c2

(
0
−2

)
+

(
−2

2

)
=

(
5
2

)
or

(
4c1
−2c2

)
=

(
7
0

)
It follows that c1 = 7

4 and c2 = 0, so

x(t) =
7e−t

4

(
4 cos(2t)
2 sin(2t)

)
+

(
−2

2

)
.

b. The phase portrait shows a stable counterclockwise spiral attracted to an equilibrium at (−2, 2).
The black trajectory satisfies the initial conditions.



4. a. From the information, we write the rate
of change in amounts, A1(t) and A2(t).
The rate of change in amount is concentra-
tion times flow rate.

dAi

dt
= amount enter − amount leave.

For Tank 1, the amount entering is f1q1 and
f3c2, while the amount leaving is f4c1. Sim-
ilar expressions give the equation for Tank 2. The concentration equations follow by simply dividing
the amount equations by the appropriate volumes.

With the data the amount equations are

dA1

dt
= 0.3 · 8 + 0.4 · c2 − 0.7 · c1,

dA2

dt
= 0.2 · 15 + 0.2 · c1 − 0.4 · c2.

Dividing by the volumes gives the concentration equations

dc1
dt

= − 7

2000
c1 +

1

500
c2 +

3

250
,

dc2
dt

=
1

500
c1 −

1

250
c2 +

3

100
.

The equilibria are found first by solving:

7

2000
c1e −

1

500
c2e =

3

250
,

− 1

500
c1e +

1

250
c2e =

3

100
.

It follows that c1e = 10.8 g/l, while c2e = 12.9 g/l. This gives the equilibrium solution, which will
be the asymptotic limit for the concentrations.

We make a change of variables z1(t) = c1(t) − 10.8 and z2(t) = c2(t) − 12.9. The homogeneous
equation, ż = Az, is (

ż1
ż2

)
=

(
−0.0035 0.002

0.002 −0.004

)(
z1
z2

)
.

The characteristic equation is

det

∣∣∣∣ −0.0035− λ 0.002
0.002 −0.004− λ

∣∣∣∣ = λ2 + 0.0075λ+ 0.00001 = 0,

which gives λ1 = −0.0057656 with its associated eigenvector v1 =

(
1

−1.13278

)
and λ2 =

−0.0017344 with its associated eigenvector v2 =

(
1.13278

1

)
. This results in the general solution

(
x1(t)
x2(t)

)
= c1

(
1

−1.13278

)
e−0.0057656t + c2

(
1.13278

1

)
e−0.0017344t +

(
10.8
12.9

)
,



which is a stable node. The solution to the IVP satisfies(
1 1.13278

−1.13278 1

)(
c1
c2

)
=

(
2− 10.8
3− 12.9

)
=

(
−8.8
−9.9

)
,

which gives c1 = 1.05752 and c2 = −8.70206. It follows that the unique solution to the IVP is(
x1(t)
x2(t)

)
=

(
1.05752
−1.19794

)
e−0.0057656t +

(
−9.85754
−8.70206

)
e−0.0017344t +

(
10.8
12.9

)
.

This solution clearly shows that the trajectory converges asymptotically to the equilibrium solution
as expected.

b. The phase portrait shows a stable node attracted to an equilibrium at (10.8, 12.9). The black
trajectory satisfies the initial conditions. The eigenvectors are labeled and shown in blue.

5. The predator-prey model is given by:

dH

dt
= 0.1H − 0.0005H2 − 0.016HP = f1(H,P ),

dP

dt
= 0.005HP − 0.2P = f2(H,P ).

The equilibria satisfy:

He(0.1− 0.0005He − 0.016Pe) = 0,

Pe(0.005He − 0.2) = 0.

One equilibrium is (He, Pe) = (0, 0), the extinction equilibrium. When Pe = 0, then there is
another equilibrium at He = 200, the carrying capacity. Finally, there is a third equilibrium with



0.005He− 0.2 = 0 and 0.1− 0.0005He− 0.016Pe = 0. The first equation gives He = 40, which gives
Pe = 5 in the second equation. Thus, there is a coexistence equilibrium, (He, Pe) = (40, 5).

As we did in class, we use Taylor’s theorem to linearize this system about the equilibria (finding
the Jacobian matrix). If h(t) = H(t)−He and p(t) = P (t)− Pe, then the linearized system can
be written:(
ḣ
ṗ

)
=

 ∂f1(He,Pe)
∂h

∂f1(He,Pe)
∂p

∂f2(He,Pe)
∂h

∂f2(He,Pe)
∂p

( h
p

)
=

(
0.1− 0.001He − 0.016Pe −0.016He

0.005Pe 0.005He − 0.2

)(
h
p

)
.

The linear system about (He, Pe) = (0, 0) is(
ḣ
ṗ

)
=

(
0.1 0
0 −0.2

)(
h
p

)
,

which has eigenvalues λ1 = −0.2 with associated eigenvector v1 =

(
0
1

)
and λ2 = 0.1 with

associated eigenvector v2 =

(
1
0

)
. This is a saddle node at the extinction equilibrium. The

general linear solution is given by(
h(t)
p(t)

)
= c1

(
0
1

)
e−0.2t + c2

(
1
0

)
e0.1t.

Thus, if there are both predators and prey, then the solution moves away from extinction (unstable).

The linear system about (He, Pe) = (200, 0) (carrying capacity of prey) is(
ḣ
ṗ

)
=

(
−0.1 −3.2

0 0.8

)(
h
p

)
,

which has eigenvalues λ1 = −0.1 with associated eigenvector v1 =

(
1
0

)
and λ2 = 0.8 with

associated eigenvector v2 =

(
32
−9

)
. This is a saddle node at this equilibrium. The general

linear solution is given by(
h(t)
p(t)

)
= c1

(
1
0

)
e−0.1t + c2

(
32
−9

)
e0.8t.

Thus, if there are both predators and prey near the carrying capacity, then the solution moves away
from this equilibrium (unstable).

The linear system about (He, Pe) = (40, 5) (coexistence) is(
ḣ
ṗ

)
=

(
−0.02 −0.64
0.025 0

)(
h
p

)
.

The characteristic equation is

det

∣∣∣∣ −0.02− λ −0.64
0.025 −λ

∣∣∣∣ = λ2 + 0.02λ+ 0.016 = 0,



which has eigenvalues λ1,2 = −0.01 ± 0.1261i. Let ω = 0.1261 then for λ1 = −0.01 + iω, the

associated eigenvector is v1 =

(
0.64

−0.01− iω

)
, which leads to the general solution

(
h(t)
p(t)

)
= c1e

−0.01t

(
0.64 cos(ωt)

−0.01 cos(ωt) + ω sin(ωt)

)
+ c2e

−0.01t

(
0.64 sin(ωt)

−0.01 sin(ωt)− ω cos(ωt)

)
.

This is a stable spiral, so all solutions of this model spiral into the coexistence equilibrium,
(He, Pe) = (40, 5).

b. The phase portrait shows equilibria at (0, 0) (saddle), (250, 0) (saddle), and (40, 5) (stable spiral).
The black trajectory satisfies the initial condition, (H(0), P (0)) = (2, 1). The nullclines for Ḣ = 0
are shown with blue dotted lines, and the nullclines for Ṗ = 0 are shown with red dotted lines.

6. a. The competition model is given by the system of differential equations:

dx1
dt

= 0.3x1 − 0.005x21 − 0.009x1x2 = g1(x1, x2),

dx2
dt

= 0.1x2 − 0.0025x22 − 0.002x1x2 = g2(x1, x2).

The equilibria are found by solving:

g1(x1e, x2e) = x1e(0.3− 0.005x1e − 0.009x2e) = 0,

g2(x1e, x2e) = x2e(0.1− 0.0025x2e − 0.002x1e) = 0.

This system has 4 equilibria. The trivial or extinction equilibrium is obvious, (x1e, x2e) = (0, 0).
When one of the populations is zero, then the other can go to its carrying capacity. Thus, when
x2e = 0, the equation 0.3 − 0.005x1e = 0 gives the carrying capacity of x1 with the equilibrium



(x1e, x2e) = (60, 0). Similarly, when x1e = 0, the equation 0.1 − 0.0025x2e = 0 gives the carrying
capacity of x2 with the equilibrium (x1e, x2e) = (0, 40). The coexistence equilibrium satisfies

0.005x1e + 0.009x2e = 0.3 and 0.0025x2e + 0.002x1e = 0.1,

which gives (x1e, x2e) ≈ (27.273, 18.182).

As we did in the previous problem, we linearize and find the Jacobian matrix (using Taylor’s
theorem). If y1(t) = x1(t)− x1e and y2(t) = x2(t)− x2e, then the linearized system can be written:(

ẏ1
ẏ2

)
=

 ∂g1(x1e,x2e)
∂y1h

∂g1(x1e,x2e)
∂y2

∂g2(x1e,x2e)
∂y1

∂g2(x1e,x2e)
∂y2

( y1
y2

)
(
ẏ1
ẏ2

)
=

(
0.3− 0.01x1e − 0.009x2e −0.009x1e

−0.002x2e 0.1− 0.005x2e − 0.002x1e

)(
y1
y2

)
.

The linear system about (x1e, x2e) = (0, 0) is(
ẏ1
ẏ2

)
=

(
0.3 0
0 0.1

)(
y1
y2

)
,

which has eigenvalues λ1 = 0.1 with associated eigenvector v1 =

(
0
1

)
and λ2 = 0.3 with asso-

ciated eigenvector v2 =

(
1
0

)
. This is an unstable node at the extinction equilibrium. The

general linear solution is given by(
y1(t)
y2(t)

)
= c1

(
0
1

)
e0.1t + c2

(
1
0

)
e0.3t.

Thus, if there are any individuals of either species, then the solution moves away from extinction
(unstable).

The linear system about (x1e, x2e) = (60, 0) is(
ẏ1
ẏ2

)
=

(
−0.3 −0.54

0 −0.02

)(
y1
y2

)
,

which has eigenvalues λ1 = −0.3 with associated eigenvector v1 =

(
1
0

)
and λ2 = −0.02 with

associated eigenvector v2 =

(
27
−14

)
. This is a stable node at this carrying capacity equilibrium.

The general linear solution is given by(
y1(t)
y2(t)

)
= c1

(
1
0

)
e−0.3t + c2

(
27
−14

)
e−0.02t.

Thus, near this equilibrium all solutions are attracted, leading to extinction of species x2.

The linear system about (x1e, x2e) = (0, 40) is(
ẏ1
ẏ2

)
=

(
−0.06 0
−0.08 −0.1

)(
y1
y2

)
,



which has eigenvalues λ1 = −0.1 with associated eigenvector v1 =

(
0
1

)
and λ2 = −0.06 with

associated eigenvector v2 =

(
1
−2

)
. This is a stable node at this carrying capacity equilibrium.

The general linear solution is given by(
y1(t)
y2(t)

)
= c1

(
0
1

)
e−0.1t + c2

(
1
−2

)
e−0.06t.

Thus, near this equilibrium all solutions are attracted, leading to extinction of species x1.

The linear system about (x1e, x2e) = (27.273, 18.182) is(
ẏ1
ẏ2

)
=

(
−0.13636 −0.24545
−0.03636 −0.04545

)(
y1
y2

)
,

which has eigenvalues λ1 = −0.19575 with associated eigenvector v1 =

(
1

0.24195

)
and λ2 =

0.013932 with associated eigenvector v2 =

(
1

−0.61232

)
. This is a saddle node at this coexis-

tence equilibrium. The general linear solution is given by(
y1(t)
y2(t)

)
= c1

(
1

0.24195

)
e−0.19575t + c2

(
1

−0.61232

)
e0.013932t.

Thus, near this equilibrium the solutions split and go away from the coexistence equilibrium.
Depending on initial conditions the solution will eventually go toward one of the carrying capacity
equilibria, leaving one species at carrying capacity and the other species extinct.

b. The phase portrait shows equilibria at (0, 0) (unstable node), (60, 0) (stable node), (0, 40) (stable
node), and ((27.27, 18.18)) (saddle node). The nullclines for ẋ1 = 0 are shown with blue dotted lines,
and the nullclines for ẋ2 = 0 are shown with red dotted lines. Typical solutions are shown for the 4
regions separated by the nullclines. All solutions starting in the region including the origin or the
one opposite the origin begin by approaching the saddle node (coexistence equilibrium). However,
once they cross into one of the other 2 regions, these solutions approach carrying capacity of either
x1 or x2, depending on initial conditions. This system results in competitive exclusion.




