
Math 337 Solutions Review Exam 1

1. a. This is a linear differential equation,so it can be written

dy

dt
+ (0.2t− 2)y = 0, with µ(t) = e

∫
(0.2t−2)dt = e0.1t

2−2t,

where µ(t) is the integrating factor. It follows:

d

dt

(
e0.1t

2−2ty
)

= 0 or e0.1t
2−2ty(t) = C

It follows that y(t) = Ce2 t−0.1 t
2
. The initial condition y(0) = 10 = C. Hence, the solution is

y(t) = 10 e2 t−0.1 t
2
.

b. This is a time varying differential equation. It can be written

y(t) =

∫ (
2− 4

t

)
dt = 2 t− 4 ln(t) + C.

The initial condition y(1) = 5 = 2+C, which implies C = 3. Hence, the solution is y(t) = 2 t− 4 ln(t) + 3.

c. This is a separable differential equation. It can be written∫
2y dy =

∫
3t2 dt or y2(t) = t3 + C.

It follows that y(t) = ±
√
t3 + C. The initial condition y(0) = 4 =

√
C, which implies C = 16.

Hence, the solution is

y(t) =
√
t3 + 16.

d. This is the logistic growth differential equation, which can be written

dy

dt
= 0.02y

(
1− y

40

)
or

dy

dt
− 0.02y = −0.0005y2,

which is a Bernoulli’s equation. Make the substitution u = y1−2 = y−1, so du
dt = −y−2 dydt . Multiply

the equation above by −y−2, and

−y−2dy
dt

+ 0.02y−1 = 0.0005 or
du

dt
+ 0.02u = 0.0005,

which is a linear equation with integrating factor µ(t) = e0.02t. Thus,

d

dt

(
e0.02tu

)
= 0.0005e0.02t or e0.02tu(t) = 0.025e0.02t + C.

Hence, with the initial condition

1

y(t)
= u(t) = 0.025 + Ce−0.02t or 0.1 = 0.025 + C, so C = 0.075.



It follows that

y(t) =
1

0.025 + 0.075e−0.02t
=

40

1 + 3e−0.02t
.

e. Rewrite the equation as

3y − 6t+ (3t+ 4y)
dy

dt
= 0.

Since ∂M(t,y)
∂y = 3 = ∂N(t,y)

∂t , this equation is exact. Integrating we see∫
(3y − 6t)dt = 3ty − 3t2 + h(y) and

∫
(3t+ 4y)dy = 3ty + 2y2 + k(t).

It is clear that the potential function is

φ(t, y) = 3ty − 3t2 + 2y2 = C.

With the initial condition y(0) = 4, the solution becomes

φ(t, y) = 3ty − 3t2 + 2y2 = 32.

f. This linear DE equation can be rewritten

dy

dt
− 2y

t
= 4t2 sin(4t), so µ(t) = e−

∫
2dt/t =

1

t2
.

Thus,
d

dt

( y
t2

)
= 4 sin(4t) or

y(t)

t2
= − cos(4t) + C.

It follows that

y(t) = Ct2 − t2 cos(4t), so 2 = C − cos(4) or C = 2 + cos(4).

Hence, the solution is
y(t) = (2 + cos(4))t2 − t2 cos(4t).

g. This is a linear and separable differential equation. We solve this time using separable techniques.
The equation can be written ∫

dy

y
=

∫
2 t dt

t2 + 1
.

The right integral uses the substitution u = t2 + 1, so du = 2 t dt. Hence,

ln |y(t)| =

∫
du

u
= ln |u|+ C = ln(t2 + 1) + C

y(t) = eln(t
2+1)+C = A(t2 + 1),

where A = eC . The initial condition y(0) = 3 = A, which implies A = 3. Hence, the solution is

y(t) = 3(t2 + 1).



h. This is a separable differential equation. It can be written∫
eydy =

∫
etdt or ey = et + C.

It follows that y(t) = ln(et + C). The initial condition y(0) = 6 = ln(1 + C), which implies
C = e6 − 1. Hence, the solution is

y(t) = ln(et + e6 − 1).

i. This is a Bernoulli equation, so rewrite

dy

dt
− 1

t
y = 2y2, with u = y1−2 = y−1 and

du

dt
= −y−2dy

dt
.

Thus,

−y−2
(
dy

dt
− 1

t
y = 2y2

)
becomes

du

dt
+

1

t
u = −2,

which is a linear equation in u. It has the integrating factor µ(t) = e
∫

1
t
dt = t, so

d(tu)

dt
= −2t, or tu(t) = −2

∫
t dt+ C = −t2 + C.

With the initial condition, y(1) = 1, it follows that:

t

y(t)
= −t2 + C, so 1 = −1 + C or C = 2.

The solution becomes:

y(t) =
t

2− t2
.

j. We rewrite the ODE: (
4t− 2 cos(2t)

y

)
+

(sin(2t)− 2)

y2
dy

dt
= 0.

We check for exactness:
∂M

∂y
=

2 cos(2t)

y2
=
∂N

∂t
.

First integrate M(t, y) with respect to t, so

φ(t, y) =

∫ (
4t− 2 cos(2t)

y

)
dt = 2t2 − sin(2t)

y
+ h(y).

Next integrate N(t, y) with respect to y, so

φ(t, y) =

∫
(sin(2t)− 2)

y2
dy = −sin(2t)

y
+

2

y
+ k(t).

Combining these results give:

φ(t, y) = −sin(2t)

y
+

2

y
+ 2t2 = C with y(0) = 2.



The initial condition gives, C = 1, which allows solving for y(t) giving:

y(t) =
2− sin(2t)

1− 2t2
.

k. Rewrite this equation:

yet − 2 + (et − 2y)
dy

dt
= 0.

Since ∂M(t,y)
∂y = et = ∂N(t,y)

∂t , this equation is exact. Integrating we see∫
(yet − 2)dt = yet − 2t+ h(y) and

∫
(et − 2y)dy = yet − y2 + k(t).

It is clear that the potential function is

φ(t, y) = yet − 2t− y2 = C.

With the initial condition y(0) = 6, the solution becomes

φ(t, y) = y(t)et − 2t− y2(t) = 6− 36 = −30.

l. The DE
dy

dt
+ y = y3et

is a Bernoulli’s equation, where we make the substitution u = y1−3 = y−2, so du
dt = −2y−3 dydt .

Multiplying the above equation by −2y−3, we obtain the linear DE in u(t)

−2y−3
dy

dt
− 2y−2 = −2et or

du

dt
− 2u = −2et.

This has the integrating factor µ(t) = e−2t, so

d

dt

(
e−2tu(t)

)
= −2e−t or e−2tu(t) = 2e−t + C.

It follows that

1

y2(t)
= u(t) = 2et + Ce2t, so 1 = 2 + C or C = −1.

Thus,

y(t) =
1√

2et − e2t
.

m. The linear ODE, tdydt = 6t− 2y − 4 with y(1) = 3, can be written

dy

dt
+

2

t
y = 6− 4

t
.

This has the integrating factor, µ(t) = e
∫

2
t
dt = t2, so

d

dt
(t2y) = 6t2 − 4t, sot2y(t) =

∫ (
6t2 − 4t

)
dt = 2t3 − 2t2 + C.



The initial condition implies, 3 = 2− 2 + C = C, so the solution is:

y(t) = 2t− 2 +
3

t2
.

2. a. The solution to the white lead problem is P (t) = 10e−kt, where t = 0 represents 1970. From
the data at 1975, we have 8.5 = 10e−5k or e5k = 10/8.5 = 1.17647. Thus, k = 0.032504 yr−1. To
find the half-life, we compute 5 = 10e−kt, so t = ln(2)/k = 21.33 yr is the half-life of lead-210.

b. The differential equation can be written P ′ = −k(P − r/k), so we make the substitution z(t) =
P (t)− r/k. This leaves the initial value problem

z ′ = −kz, z(0) = P (0)− r/k = 10− r/k,

which has the solution z(t) = (P (0)− r/k)e−kt = P (t)− r/k. Thus, the solution is

P (t) =
(

10− r

k

)
e−kt +

r

k
= 2.3086e−kt + 7.6914,

where k = 0.032504. In the limit,

lim
t→∞

P (t) = 7.6914 disintegrations per minute of 210Pb.

3. a. The differential equation describing the temperature of the tea satisfies

H ′ = −k(H − 21), H(0) = 85 and H(5) = 81.

Make the substitution z(t) = H(t)− 21, which gives the differential equation

z ′ = −kz, z(0) = H(0)− 21 = 64.

The solution becomes z(t) = 64e−kt = H(t)− 21 or

H(t) = 64e−kt + 21.

To find k, we solve H(5) = 81 = 64e−5k + 21 or e5k = 64/60 = 1.0667. Thus, k = 0.012908 min−1.
The water was at boiling point when 64e−kt + 21 = 100 or e−kt = 79/64. It follows that t =
− ln(79/64)/k = −16.3 min. This means that the talk went 16.3 min over its scheduled ending.

b. To obtain a temperature of at least 93◦C, then we need to find the time that satisfies H(t) =
93 = 64e−kt + 21, so e−kt = 72/64 = 1.125. Solving for t gives t = − ln(72/64)/k = −9.125 min. It
follows that you must arrive at the hot water within 16.3 − 9.1 = 7.2 min of the scheduled end of
the talks.

4. a. In lecture, this type of pollution problem is solved using the change in amount equals the
amount entering minus the amount leaving or da

dt = Qf1 − cf2, where Q = 10 is the concentration
entering, c is the concentration in the lake, and f1 = 2200 and f2 = 2000 are the flows entering
and leaving the lake. (Evaporation contributes nothing to amounts of pollutant.) Substituting the

parameters into the differential equation, dividing by V = 106, and using c(t) = a(t)
V , gives

c ′ =
1

106
(22000− 2000c) = −0.002(c− 11).



We make the substitution z(t) = c(t)−11, which gives the initial value problem z ′ = −0.002z with
z(0) = c(0)− 11 = −11. The solution of this differential equation is z(t) = −11e−0.002t = c(t)− 11,
so

c(t) = 11− 11e−0.002t.

b. Solve the equation c(t) = 11− 11e−0.002t = 5, so e0.002t = 11/6 or t = 500 ln(11/6) = 303.1 days.
The limiting concentration

lim
t→∞

c(t) = 11.

The graph is below.
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Problem 4

5. a. Fluoxetine, F , satisfies the ODE:

dF

dt
= −0.5F, F (0) = 21 ng/ml.

The solution to this ODE is:
F (t) = 21e−0.5t ng/ml.

The half life satisfies, th = ln(2)
0.5 ≈ 1.386 days

b. Norfluoxetine, N , satisfies the ODE:

dN

dt
=
F (t)

3
− 0.08N, N(0) = 0 ng/ml,

which is readily written as the linear ODE:

dN

dt
+ 0.08N = 7e−0.5t, with integrating factor µ(t) = e0.08t.

Thus, we have

d

dt

(
e0.08tN

)
= 7e−0.42t, or e0.08tN = − 7

0.42
e−0.42t + C.



With the initial condition, N(0) = 0, we have C = 7
0.42 , so

N(t) =
7

0.42

(
e−0.08t − e−0.5t

)
=

50

3

(
e−0.08t − e−0.5t

)
ng/ml.

c. The maximum occurs when N ′(t) = 0, so

N ′(t) =
50

3

(
−0.08e−0.08t + 0.5e−0.5t

)
= 0.

Equivalently,

0.08e−0.08t = 0.5e−0.5t or e0.42t =
0.5

0.08
=

25

4

It follows that

tmax =
1

0.42
ln

(
25

4

)
≈ 4.3633 min.

with N(tmax) = 9.8749 ng/ml

6. The differential equation with the information in the problem is given by:

dH

dt
= −k(H − 25), H(0) = 35,

where t = 0 is 7 AM. We make the change of variables z(t) = H(t)−25, so z(0) = 10. The problem
now becomes

dz

dt
= −kz, z(0) = 10,

which has the solution
z(t) = 10 e−kt or H(t) = 25 + 10 e−kt.

From the information at 9 AM, we see

H(2) = 33.5 = 25 + 10 e−2k or e2k =
10

8.5
or k =

ln
(
10
8.5

)
2

= 0.081259.

It follows that
H(t) = 25 + 10 e−0.081259t.

The time of death is found by solving

H(td) = 39 = 25 + 10 e−0.081259td or e−0.081259td =
14

10
or td = − ln(1.4)

0.081259
= −4.1407.

It follows that the time of death is 4 hours and 8.4 min before the body is found, which gives the
time of death around 2:52 AM.

b. This differential equation is separable, so we can write:∫
(H − 25)−2/3dH = −kb

∫
dt = −kbt+ C,

3(H − 25)1/3 = −kbt+ C,

H(t) = 25 +

(
C − kbt

3

)3

.



The initial temperature of the body gives:

35 = 25 +

(
C

3

)3

or C = 3(10)1/3 ≈ 6.4633.

From the temperature at t = 2,

33.5 = 25 +
(

101/3 − 2
3kb

)3
or 8.51/3 = 101/3 − 2

3kb,

so
kb = 1.5

(
101/3 − 81/3

)
≈ 0.17041.

It follows that the time of death satisfies:

39 = 25 +
(

101/3 − td
3 kb

)3
or 101/3 − 141/3 =

td
3
kb.

Thus,

td =
3

kb

(
101/3 − 141/3

)
≈ −4.5016 or 4 hr 30.1 min,

which is approximately 2:29.9 AM. These models differ about 22 min in their predictions for the
time of death.

7. a. The solution of the Malthusian growth model is B(t) = 1000 e0.01 t. The population doubles
when the bacteria reaches 2000, so 1000 e0.01 t = 2000 or e0.01 t = 2. Thus, 0.01 t = ln(2) or
t = 100 ln(2) ≈ 69.3 min for the population to double.

b. The model with time-varying growth is a linear and separable differential equation, so

dB

dt
= 0.01(1− e−t)B or

∫
dB

B
= 0.01

∫
(1− e−t)dt

ln |B(t)| = 0.01(t+ e−t) + C or B(t) = Ae0.01(t+e−t),

where A = eC . With the initial condition, B(0) = 1000 = Ae0.01 or A = 1000 e−0.01. Thus, the
solution to this time-varying growth model is

B(t) = 1000 e0.01(t+e−t−1).

c. The Malthusian growth model gives B(5) = 1051 and B(60) = 1822, while the modified growth
model gives B(5) = 1041 and B(60) = 1804.

8. a. The solution to the Malthusian growth model is given by P (t) = 100 e0.2 t. This population
doubles when 100 e0.2 t = 200 or e0.2 t = 2, so t = 5 ln(2) ≈ 3.466 yrs.

b. This model, including the modification for habitat encroachment, is a linear and separable
differential equation. It can be written∫

dP

P
=

∫
(0.2− 0.02t)dt or ln |P | = 0.2 t− 0.01 t2 + C.

It follows that P (t) = e0.2 t−0.01 t
2+C = Ae0.2 t−0.01 t

2
, where A = eC . The initial condition P (0) =

100 = A, which implies A = 100. Hence, the solution satisfies

P (t) = 100 e0.2 t−0.01 t
2
.



c. We examine the differential equation in Part b and see that dP
dt = 0 when 0.2 − 0.02t = 0,

which implies that t = 10. Thus, the maximum of population is P (10) = 100 e ≈ 271.8. If we
solve P (t) = 100 e0.2 t−0.01 t

2
= 100, then this is equivalent to e0.2 t−0.01 t

2
= 1 or 0.2 t − 0.01 t2 =

−0.01 t(t − 20) = 0. Thus, either t = 20 (or 0), so the population returns to 100 after 20 years.
The graph of the population can be seen below.
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9. a. From lecture notes, we write an ODE governing the amounts of pesticide in the lake. With
the parameters, V = 400, 000 m3, f1 = 300 m3/day and Q1 = 12µg/m3, f2 = 500 m3/day and
Q2 = 4µg/m3, and the assumption of well-mixed and constant volume, so f3 = 800 m3/day, we
write the ODE in concentration via an ODE in amounts as follows:

dA

dt
= 300 · 12 + 500 · 4− 800c, so

dc

dt
=

5600− 800c

400000
= −0.002(c− 7).

We make the substitution, z(t) = c(t)− 7, which gives the simpler equation:

dz

dt
= −0.002z, z(0) = −7, or z(t) = −7e−0.002t.

It follows that
c(t) = 7− 7e−0.002t.

b. The lake has a concentration of 4µg/m3 of pesticide when

7− 7e−0.002t = 4, or 3 = 7e−0.002t, or e0.002t =
7

3
, so t2 = 500 ln

(
7

3

)
.

Thus, when t2 = 423.65 days, we have c(t2) = 4. The limiting concentration is when dc
dt = 0 or

c = 7µg/m3 of pesticide in this lake.

c. With the ODE for the population satisfying the following growth model:

dP

dt
= (0.08− 0.002 t)P 3/4, P (0) = 1296,

we apply separation of variables, so:∫
P−

3
4 dP =

∫
(0.08− 0.002t)dt, or 4P

1
4 = 0.08t− 0.001t2 + C.



Thus,

P (t) =

(
0.02t− 0.00025t2 +

C

4

)4

,

where the initial condition gives, P (0) =
(
C
4

)4
= 1296 or C

4 = 6. It follows that

P (t) =
(
0.02t− 0.00025t2 + 6

)4
.

The maximum occurs when dP
dt = 0, so 0.08 = 0.002t or t = 40 days. Substituting the into the

solution gives the maximum Population,P (40) = 1677.72. We find P (100) = 915.06.

10. a. This population of cells in a declining medium satisfies a separable differential equation,
which can be written∫

P−2/3dP =

∫
0.3 e−0.01tdt or 3P 1/3(t) = −30 e−0.01t + 3C.

It follows that P 1/3(t) = −10 e−0.01t +C, so P (t) =
(
C − 10 e−0.01t

)3
. The initial condition P (0) =

1000 = (C − 10)3, which implies C = 20. The solution is given by

P (t) =
(
20− 10e−0.01 t

)3
.

b. This population doubles when P (t) =
(
20− 10e−0.01 t

)3
= 2000, so 20 − 10e−0.01 t = 10 3

√
2 or

e−0.01 t = 2− 3
√

2. It follows that t = 100 ln
(

1
2− 3√2

)
≈ 30.1 hr. For large t, limt→∞ e

−0.01 t = 0, so

limt→∞ P (t) = 203 = 8000. Thus, there is a horizontal asymptote at P = 8000, so the population
tends towards this value. The graph of the population can be seen below.
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11. a. The change in amount of phosphate, P (t), is found by adding the amount entering and
subtracting the amount leaving.

dP

dt
= 200 · 10− 200 · c(t),

where c(t) is the concentration in the lake with c(t) = P (t)/10, 000. By dividing the equation by
the volume, the concentration equation is given by

dc

dt
= 0.2− 0.02c = −0.02(c− 10), c(0) = 0.



With the substitution z(t) = c(t)− 10, the equation above reduces to the problem

dz

dt
= −0.02z, z(0) = −10,

which has the solution z(t) = −10 e−0.02 t. Thus, the concentration is given by

c(t) = 10− 10 e−0.02 t.

b. The differential equation describing the growth of the algae is given by

dA

dt
= 0.5(1− e−0.02 t)A2/3.

By separating variables, we see∫
A−2/3dA = 0.5

∫
(1− e−0.02 t)dt

3A1/3(t) = 0.5(t+ 50 e−0.02 t) + C

A(t) =

(
0.5(t+ 50 e−0.02 t) + C

3

)3

From the initial condition A(0) = 1000, we have 1000 =
(
25+C

3

)3
. It follows that C = 5, so

A(t) =

(
t+ 50 e−0.02 t + 10

6

)3

.

12. a. Write the differential equation dw
dt = −0.2(w − 80), then z(t) = w(t)− 80. It follows that

dz

dt
= −0.2z, z(0) = −80,

with the solution z(t) = −80e−0.2t = w(t)− 80. Thus,

w(t) = 80
(
1− e−0.2t

)
.

For a 40 kg alligator, w(t) = 40 = 80
(
1− e−0.2t

)
or 40 = 80e−0.2t, so e0.2t = 2 or 0.2t = ln(2).

Thus, t = 5 ln(2) ≈ 3.47 years.

b. The pesticide accumulation is given by

dP

dt
= 600

(
80
(
1− e−0.2t

))
, P (0) = 0.

The solution is given by

P (t) = 48, 000

∫ (
1− e−0.2t

)
dt = 48, 000

(
t+ 5e−0.2t

)
+ C.

The initial condition gives P (0) = 0 = 240, 000 + C, so C = −240, 000. Hence,

P (t) = 48, 000
(
t+ 5e−0.2t

)
− 240, 000.



The amount of pesticide in the alligator at age 5 is P (5) = 48, 000
(
5 + 5e−1

)
− 240, 000 =

240, 000e−1 ≈ 88291 µg.

c. The pesticide concentration for a 5 year old alligator is

c(5) =
P (5)

1000w(5)
=

88, 291

80, 000 (1− e−1)
≈ 1.75 ppm.

13. a. The differential equation can be written:

dc

dt
= −0.004(c− 15),

so we make the substitution z(t) = c(t) − 15. Since c(0) = 0, it follows that z(0) = −15. The
solution of the substituted equation is given by:

z(t) = −15e−0.004t = c(t)− 15

c(t) = 15− 15e−0.004t.

The limiting concentration satisfies:

lim
t→∞

c(t) = 15 mg/m3.

b. We begin by separating variables, which gives:∫
dc

c− 15
= −0.001

∫
(4− cos(0.0172t)) dt

ln(c(t)− 15) = −0.001

(
4t− sin(0.0172t)

0.0172

)
+ C

c(t) = 15 +Ae
−0.001

(
4t− sin(0.0172t)

0.0172

)

It is easy to see that the initial condition c(0) = 0 implies that A = −15. Thus, the solution to this
problem is given by:

c(t) = 15− 15 e−0.001(4t−58.14 sin(0.0172t))

14. a. We separate variables, so∫
M−3/4dM = −k

∫
dt or 4M1/4 = −kt+ 4C

M(t) =

(
C − k

4
t

)4

From the initial condition, M(0) = 16 = C4, it follows that C = 2. From the information that
M(10) = 1 = (2− 10k/4)4, we have k = 0.4, so

M(t) = (2− 0.1t)4.



The fruit vanishes in 20 days.

b. We separate variables again to find:∫
M−3/4dM = −0.8

∫
e−0.02tdt or 4M1/4 =

0.8

0.02
e−0.02t + 4C

M(t) =
(
10e−0.02t + C

)4
.

From the initial condition, M(0) = 16 = (10 + C)4, it follows that C = −8, so

M(t) =
(
10e−0.02t − 8

)4
.

Solving 10e−0.02t = 8, which is when the fruit vanishes, we find t = 50 ln(5/4). Thus, the fruit
vanishes in 11.157 days.

15. a. The general solution to the Malthusian growth problem with the initial condition P (0) = 60
is

P (t) = 60 ert.

We are given that 2 weeks later P (2) = 80 = 60 e2r, so it follows that r = 1
2 ln

(
4
3

)
= 0.14384. This

gives the solution:
P (t) = 60 e0.14384 t.

It is easy to see that the population doubles when 120 = 60 e0.14384 t, so 0.14384 td = ln(2) or the
doubling time is

td =
ln(2)

r
= 4.819 weeks.

b. We begin by separating variables, so the general solution satisfies:∫
dP

P
=

∫
(a− b t) dt or ln(P (t)) = a t− bt2

2
+ C or P (t) = eCea t−

bt2

2 .

Since the initial value is P (0) = 60, it follows that eC = 60. Thus,

P (t) = 60 ea t−
bt2

2 .

We now use the data at t = 2 and 4 weeks. It follows from the solution above that

80 = 60 e2 a−2 b

90 = 60 e4 a−8 b.

We rearrange the terms and take logarithms of both sides to get

2 a− 2 b = ln
(
4
3

)
4 a− 8 b = ln

(
3
2

)
.

We solve these equations simultaneously to obtain

2 b = ln
(
4
3

)
− 1

2 ln
(
3
2

)
,



so b = 0.042475. But a = b+ 1
2 ln(4/3) or a = 0.1863. It follows that the solution is

P (t) = 60 e0.1863 t−0.021237 t
2
.

The population reaches a maximum when the derivative is zero, which occurs when tmax = a
b =

4.3865, so the maximum population is P (tmax) = 90.286.

16. (Allee effect) Consider the DE given by the model:

dP

dt
= P

(
9− 0.01(P − 70)2

)
= A(P ).

The equilibria of this population model satisfy P
(
9− 0.01(P − 70)2

)
= 0. Thus, Pe = 0, 40, and

100. From the phase portrait below, it is easy to see that the equilibria Pe = 0 and 100 are stable,
while Pe = 40 is unstable. The carrying capacity for this population is Pe = 100, and the critical
threshold number of animals required to avoid extinction is Pe = 40.
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17. a. The solution follows the logistic growth solution seen in 1. d. The solution is

F (t) =
10, 000

50 + 150e−0.4t
.

b. This is a standard logistic growth model, so the equilibria are Fe = 0 and 200 (thousand). Below
is a sketch of the function with the phase portrait. The equilibrium Fe = 0 is unstable, while the
carrying capacity, Fe = 200 (thousand), is a stable equilibrium.
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Problem 17. b Problem 17. c

c. With harvesting, the right hand side of the differential equation is written

0.4F

(
1− F

200

)
− 15 = −0.002F 2 + 0.4F − 15 = −0.002(F − 50)(F − 150).

It follows that the equilibria are Fe = 50 and 150 (thousand). Above is a sketch of the function
with the phase portrait. The equilibrium Fe = 50 (thousand) is the critical number of fish needed
to avoid extinction and this equilibrium is unstable. The carrying capacity, Fe = 150 (thousand),
is a stable equilibrium.

18. a. The ODE for a protein controlled by induction, x, satisfies:

dx

dt
=

6.5x2

30 + x2
− 0.5x = f(x).

At equilibria,

f(x) =
6.5x2e

30 + x2e
− 0.5x = 0, so 13x2e = xe(30 + x2e).

Rearranging we get:

xe(x
2
e − 13xe + 30) = 0, so xe(xe − 3)(xe − 10) = 0.

Since f(1) = 6.5
31 − 0.5 < 0 and the x-intercepts are xe = 0, 3, 10, we readily draw the graph of

the rhs of the ODE with intercepts being equilibria. Below is the graph of the function with the
phase portrait on the x-axis, showing all equilibria (with stability): xe = 0 (stable), 3 (unstable),
10 (stable).
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b. From this model the concentration of the protein when the gene is turned on is xe = 10, and the
critical threshold concentration, below which the gene is turned off is xe = 3.

Numerical Methods

19. a. The initial value problem:

dy

dt
=
y

t
+ 2t or

dy

dt
− y

t
= 2t, y(1) = 5,

is a linear ODE, which has an integrating factor µ(t) = exp
(
−
∫

dt
t

)
= 1

t . It follows that

d

dt

(y
t

)
= 2, so integrating

y(t)

t
= 2t+ C.

With the IC, the solution becomes
y(t) = 2t2 + 3t.

b. Euler’s method is used to simulate the solution for t ∈ [1, 4] with stepsizes of h = 0.2, 0.1, and
0.05. We compute the percent error between the Euler approximation and the actual solution at
t = 2, 3, and 4 with 6 significant figures for the Euler approximations and 3 significant figures for
the percent errors.

Actual Euler Error Euler Error Euler Error

tn h = 0.2 % h = 0.1 % h = 0.05 %

2 14 13.4835 -3.690 13.7325 -1.91 13.8638 -0.973

3 27 25.7581 -4.60 26.3604 -2.37 26.6754 -1.20

4 44 41.8969 -4.78 42.9203 -2.45 43.4529 -1.24



c. Improved Euler’s method is used to simulate the solution for t ∈ [1, 4] with stepsizes of h = 0.2,
0.1, and 0.05. We compute the percent error between the Improved Euler approximation and the
actual solution at t = 2, 3, and 4, using 6 significant figures for the Improved Euler approximations
and 3 significant figures for the percent errors.

Actual Im Euler Error Im Euler Error Im Euler Error

tn h = 0.2 % h = 0.1 % h = 0.05 %

2 14 13.9655 -0.246 13.9907 -0.0664 13.9976 -0.0171

3 27 26.9299 -0.260 26.9813 -0.0693 26.9952 -0.0178

4 44 43.894 -0.241 43.9718 -0.0641 43.9927 -0.0166

20. The radioactive model given by the IVP:

dR

dt
= −0.05R+ 0.2e−0.01t, R(0) = 10,

is solved both exactly and numerically.

a. The DE is linear and can be written:

dR

dt
+ 0.05R = 0.2e−0.01t with µ(t) = e0.05t.

It follows that it can be written:

d

dt

(
e0.05tR(t)

)
= 0.2e0.04t or e0.05tR(t) = 0.2

∫
e0.04tdt = 5e0.04t + C.

Thus, R(t) = 5e−0.01t + Ce−0.05t, with R(0) = 10 = 5 + C. The solution is:

R(t) = 5e−0.05t + 5e−0.01t.

b. Euler’s method is used to simulate the solution for t ∈ [0, 5] with stepsizes of h = 1, 0.5, and
0.25. We compute the percent error between the Euler approximation and the actual solution at
t = 1, 2, 3, 4, and 5 with 6 significant figures for the Euler approximations and 3 significant figures
for the percent errors.

Actual Euler Error Euler Error Euler Error

tn h = 1 % h = 0.5 % h = 0.25 %

1 9.70640 9.7 -0.0659 9.70325 -0.0324 9.70484 -0.0161

2 9.42518 9.41301 -0.129 9.41919 -0.0635 9.42221 -0.0315

3 9.15577 9.13840 -0.190 9.14722 -0.0933 9.15153 -0.0463

4 8.89760 8.87557 -0.248 8.88676 -0.122 8.89222 -0.0605

5 8.65015 8.62395 -0.303 8.63725 -0.149 8.64375 -0.0740

c. Improved Euler’s method is used to simulate the solution for t ∈ [0.5] with stepsizes of h = 1, 0.5,
and 0.25. We compute the percent error between the Improved Euler approximation and the actual
solution at t = 1, 2, 3, 4, and 5, using 6 significant figures for the Improved Euler approximations
and 3 significant figures for the percent errors.



Actual Im Euler Error Im Euler Error Im Euler Error

tn h = 1 % h = 0.5 % h = 0.25 %

1 9.70640 9.70650 0.00112 9.70642 0.000275 9.70640 0.0000681

2 9.42518 9.42539 0.00220 9.42523 0.000539 9.42519 0.000134

3 9.15577 9.15606 0.00323 9.15584 0.000793 9.15579 0.000196

4 8.89760 8.89798 0.00422 8.89769 0.00104 8.89762 0.000257

5 8.65015 8.65060 0.00517 8.65026 0.00127 8.65018 0.000314


