\qquad

Lecture Notes 8: Fourier Transforms

Note: For full credit you must show intermediate steps in your calculations.

1. (3pts) Find the Fourier transform of the following function:

$$
f(x)=\left\{\begin{array}{cl}
e^{-a x}, & x \geq 0, \\
0, & x<0,
\end{array}\right.
$$

where $a>0$. Show your integrations. This result gives you one transform pair for a Fourier transform table.
(Slide 15-17)
2. (4pts) The Fourier sine transform is defined by:

$$
F(\omega)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \sin (\omega x) d x
$$

while its inverse transform is given by:

$$
f(x)=\int_{0}^{\infty} F(\omega) \sin (\omega x) d \omega .
$$

Consider $F(\omega)=e^{-\beta \omega}, \beta>0(\omega \geq 0)$. Find the inverse Fourier sine transform by evaluating:

$$
f(x)=\int_{0}^{\infty} e^{-\beta \omega} \sin (\omega x) d \omega .
$$

Show your integration methods in solving this problem (not Maple). This result gives you one transform pair for a Fourier sine transform table.
(Slide 15-17)
3. (3pts) Suppose that

$$
f(x)=\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} d \omega, \quad \text { and } \quad F(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} d x
$$

Find the Fourier transform of $x f(x)$. (Hint: Try differentiating $F(\omega)$ with respect to ω.) (Slides 15-17).
4. (6pts) The Gamma function, $\Gamma(x)$ is defined:

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

a. Show the following:

$$
\Gamma(x+1)=x \Gamma(x), \quad \text { and } \quad \Gamma(n+1)=n!
$$

b. Evaluate the following:

$$
\Gamma\left(\frac{1}{2}\right), \quad \text { and } \quad \Gamma\left(\frac{3}{2}\right) .
$$

Hint: The first of these can be solved with the substitution, $t=u^{2}$.

