\qquad

Lecture Notes 7: Nonhomogeneous PDEs

Note: For full credit you must show intermediate steps in your calculations.
Consider the nonhomogeneous PDE in a circular domain:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=k \nabla^{2} u+f(r, t)=\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+f(r, t), \quad 0<r<a, \quad t>0, \tag{1}
\end{equation*}
$$

with homogeneous BC and IC:

$$
u(a, t)=0 \quad \text { and } \quad u(r, 0)=0 .
$$

1. (7pts) Consider the PDE (1) with its homogeneous BCs. Find the eigenfunctions $\phi_{n}(r)$ and write an eigenfunction expansion:

$$
u(r, t)=\sum_{n=1}^{\infty} a_{n}(t) \phi_{n}(r) .
$$

Use principles of orthogonality to find a linear nonhomogeneous ODE for the coefficients $a_{n}(t)$. From the initial condition find $a_{n}(0)$, then write the solution for $a_{n}(t)$, which will be in integral form (variation of parameters formula). (Slides 10-14)
2. (4pts) Continuing with this nonhomogeneous PDE (1) give the appropriate Green's function, $G\left(r, t ; r_{0}, t_{0}\right)$. With this Green's function, write the solution to (1), $u(r, t)$ (much like Slide 28). (Slides 24-28).
3. (4pts) How would your answers to this problem change if the boundary condition changed from the fixed above to insulated (Dirichlet above to Neumann), that is:

$$
\frac{\partial u}{\partial r}(a, t)=0 .
$$

Comment on the solvability of this problem or complications in the physical solution.

