\qquad

Lecture Notes 5: Laplace's Equation on a Sphere

Note: For full credit you must show intermediate steps in your calculations.

1. (6pts) Consider the Laplace's equation in a sphere with no θ dependence:

$$
\nabla^{2} u=\frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2} \sin (\phi)} \frac{\partial}{\partial \phi}\left(\sin (\phi) \frac{\partial u}{\partial \phi}\right)=0 .
$$

with the boundary condition $u(a, \phi)=F(\phi)$. Find the general solution to this problem, showing all steps using separation of variables and including the Fourier coefficients (Slides 35-41).
2. (4pts) Suppose that the boundary condition for Problem 1 satisfies:

$$
u(a, \phi)=F(\phi)=\alpha \cos (2 \phi)+\beta \cos (\phi) .
$$

Write $F(\phi)$ as a sum of Legendre polynomials in $\cos (\phi)$, then use orthogonality to simplify your answer in Problem 1 and write this fairly simple form of $u(\rho, \phi)$. (Slides 30, 35-41).
3. (6pts) Use the one-dimensional Rayleigh quotient (Slide 4 of Lecture Notes: Sturm-Liouville Problem: Part C) to show that $\mu \geq 0$ (if $m \geq 0$) for the $2^{\text {nd }}$ Sturm-Liouville problem (in ϕ) listed on Slide 24. Are there conditions that give $\mu=0$ as an eigenvalue, and if so list those conditions?

