\qquad

Lecture Notes 4: Wave Equation on a Sphere

Note: For full credit you must show intermediate steps in your calculations.

1. (4pts) In the lecture notes we showed the power series solution for Legendre's equation:

$$
\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d g}{d x}\right)+n(n+1) g=0 .
$$

Use the ratio test to show that our series solutions converge for all $x \in(-1,1)$. In addition, prove that this series diverges for $x= \pm 1$ unless n is an integer (Slides 27-28).
2. (5pts) Use Rodrigues' formula to find $P_{6}(x)$, then use the formula on Slide 32 to find the associated Legendre polynomial, $P_{6}^{2}(x)$ (Slides 30-32). Graph these two functions for $x \in(-1,1)$.
3. (7pts) a. Consider the Sturm-Liouville problem with Dirichlet BCs for shells inside a sphere:

$$
\begin{aligned}
\frac{d}{d \rho}\left(\rho^{2} \frac{d u}{d \rho}\right)+\lambda \rho^{2} u & =0, & & 1<\rho<4, \\
u(1) & =0, & & u(4)=0 .
\end{aligned}
$$

This is the spherical Bessel function with no ϕ-dependence. To solve this ordinary differential equation, you may find it useful to let $u(\rho)=v(\rho) / \rho$ and first solve the equation for $v(\rho)$ (though the case $\lambda=0$ should be fairly easy to solve). Find the eigenvalues and eigenfunctions, and state the orthogonality relationship (Slide 33).
b. Let $\phi_{n}(\rho)$ be the eigenfunctions in Part a. Find the generalized Fourier coefficients b_{n} for

$$
f(\rho)=\frac{1}{\rho}=\sum_{n=1}^{\infty} b_{n} \phi_{n}(\rho) .
$$

