\qquad

Lecture Notes 3: Laplace's Equation on a Cylinder

Note: For full credit you must show intermediate steps in your calculations.

1. (8pts) Consider Laplace's equation for a cylinder:

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0 .
$$

with the boundary conditions:

$$
u(r, \theta, 0)=\alpha(r) \cos (2 \theta), \quad u_{z}(r, \theta, H)=0, \quad \text { and } \quad u(a, \theta, z)=0 .
$$

Find the solution for this problem, noting differences from the problem in the notes (Slides 6-12) and writing the answer in the simplest form (showing only nonzero Fourier coefficients).
2. (8pts) Consider Laplace's equation for a cylinder with no θ dependence:

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{\partial^{2} u}{\partial z^{2}}=0 .
$$

with the boundary conditions:

$$
u_{z}(r, 0)=0, \quad u_{z}(r, H)=0, \quad \text { and } \quad u(a, z)=g(z) .
$$

Find the solution for this problem, noting differences from the problem in the notes (Slides 14-17) and writing the answer in the simplest form (showing only nonzero Fourier coefficients).

