\qquad

Lecture Notes 1: Higher Dimensional PDEs

Note: For full credit you must show intermediate steps in your calculations.

1. (5pts) Consider the heat equation:

$$
\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right),
$$

with the BCs:

$$
\begin{aligned}
u(x, 0, t)=0, & u(x, H, t)=0, \\
u_{x}(0, y, t)=0, & u_{x}(L, y, t)=0,
\end{aligned}
$$

and IC

$$
u(x, y, 0)=\alpha(x, y)
$$

Repeat the steps done for the wave equation for this heat equation, emphasizing the changes caused by the insulated BCs at $x=0$ and $x=L$. You are not asked to create any 3D pictures for this case. Give the Sturm-Liouville problems, the product solution, the superposition solution, and the Fourier coefficients. (Slides 4-10)
2. (3pts) Slide 10 takes the solution given from the superposition principle:

$$
u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(a_{m n} \cos \left(c \sqrt{\lambda_{m n}} t\right)+b_{m n} \sin \left(c \sqrt{\lambda_{m n}} t\right)\right) \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi y}{H}\right),
$$

and states the orthogonality gives the Fourier coefficients:

$$
a_{m n}=\frac{4}{L H} \int_{0}^{H} \int_{0}^{L} \alpha(x, y) \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi y}{H}\right) d x d y .
$$

Provide the details on how this expression is derived. That is, you need to state clearly some of the intermediate steps on this slide.
3. (4pts) Let $L=\nabla^{2}$ be a linear operator. Show that this operator is self-adjoint with the BCs of Problem 1 above. That is, suppose that

$$
\nabla^{2} \phi_{i}+\lambda_{i} \phi_{i}=0, \quad \text { for } \quad i=1,2,
$$

with boundary conditions:

$$
\phi_{i}(x, 0)=0, \quad \phi_{i}(x, H)=0, \quad \frac{\partial \phi_{i}}{\partial x}(0, y)=0, \quad \frac{\partial \phi_{i}}{\partial x}(L, y)=0, \quad \text { for } \quad i=1,2,
$$

then

$$
\iint_{R}\left(\phi_{1} \nabla^{2} \phi_{2}-\phi_{2} \nabla^{2} \phi_{1}\right) d R=\iint_{R}\left(\phi_{1} L\left[\phi_{2}\right]-\phi_{2} L\left[\phi_{1}\right]\right) d R=0 .
$$

(Slide 20-21)
4. (4pts) Consider the set of functions:

$$
\phi_{1}(x)=1, \quad \phi_{2}(x)=x, \quad \phi_{3}(x)=x^{2}, \quad \phi_{4}(x)=x^{3} .
$$

Define the inner product of two functions $u(x)$ and $v(x)$ as

$$
\langle u, v\rangle=\int_{-1}^{1} u(x) v(x) d x .
$$

The two functions, $u(x)$ and $v(x)$, are orthogonal if $\langle u, v\rangle=0$. Use the Gram-Schmidt process (Slides 24-26) to find a set of mutually orthogonal functions, $\psi_{1}, \psi_{2}, \psi_{3}$, and ψ_{4}, based on the functions, $\phi_{1}, \phi_{2}, \phi_{3}$, and ϕ_{4}.

