\qquad

Lecture Notes 10: Fourier Transforms C

Note: For full credit you must show intermediate steps in your calculations.

1. (6 pts) The Fourier sine and cosine transform pairs are defined by:

$$
\begin{array}{ll}
f(x)=\int_{0}^{\infty} F(\omega) \sin (\omega x) d \omega & \mathcal{S}[f(x)]=F(\omega)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \sin (\omega x) d x \\
f(x)=\int_{0}^{\infty} F(\omega) \cos (\omega x) d \omega & \mathcal{C}[f(x)]=F(\omega)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \cos (\omega x) d x
\end{array}
$$

Consider $f(x)=e^{-\alpha x}, \alpha>0(x \geq 0)$. Use the definitions of $\mathcal{S}[f(x)]$ and $\mathcal{C}[f(x)]$ to find each of these Fourier transforms.
(Slide 6)
b. With our function $f(x)=e^{-\alpha x}, \alpha>0(x \geq 0)$ and the results computed in Part a, verify the differentiation rules for Fourier sine and cosine transforms. That is, with $f(x)=e^{-\alpha x}$ show that:

$$
\mathcal{C}\left[\frac{d f}{d x}\right]=-\frac{2}{\pi} f(0)+\omega \mathcal{S}[f] \quad \mathcal{S}\left[\frac{d f}{d x}\right]=-\omega \mathcal{C}[f],
$$

and for the second derivatives:

$$
\mathcal{C}\left[\frac{d^{2} f}{d x^{2}}\right]=-\frac{2}{\pi} \frac{d f}{d x}(0)-\omega^{2} \mathcal{C}[f] \quad \mathcal{S}\left[\frac{d^{2} f}{d x^{2}}\right]=\frac{2}{\pi} \omega f(0)-\omega^{2} \mathcal{S}[f] .
$$

(Slide 8)
2. (10pts) Find the solution for Laplace's equation in the first quadrant

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad x>0, \quad y>0,
$$

with the boundary conditions:

$$
\frac{\partial}{\partial x} u(0, y)=0, \quad u(x, 0)=\left\{\begin{array}{cc}
10, & 0<x<5 \\
0, & x \geq 5
\end{array} .\right.
$$

Show all steps in the separation of variables, including the appropriate selection of functions that keep $u(x, y)$ tending to zero as x and $y \rightarrow \infty$. Write how you obtain your Fourier coefficients and evaluate those integrals. Write your solution in either a sum or integral form that can be readily programmed.
(Slides 20-37)
b. Use your solution in Part a to create a 3D plot of $u(x, y)$ with $x \in[0,20]$ and $y \in[0,20]$. Your program should use at least 100 terms in any Fourier series and integrate at least $\omega \in[0,100]$ for Fourier transforms. Be sure to include your program.
(Slides 20-37)

