4.4.1. Consider vibrating strings of uniform density ρ_{0} and tension T_{0}.
*(a) What are the natural frequencies of a vibrating string of length L fixed at both ends?
*(b) What are the natural frequencies of a vibrating string of length H,
6 which is fixed at $x=0$ and "free" at the other end [ie., $\partial u / \partial x(H, t)=$ 0]? Sketch a few modes of vibration as in Fig. 4.4.1.
(c) Show that the modes of vibration for the odd harmonics (ie., $n=$ $1,3,5, \ldots$) of part (a) are identical to modes of part (b) if $H=L / 2$.
5 Verify that their natural frequencies are the same. Briefly explain using symmetry arguments.
4.4.9 From (4.4.1), derive conservation of energy for a vibrating string,

$$
\begin{gather*}
d E \tag{4.4.15}\\
d t
\end{gather*}=\left.\epsilon^{2} \frac{\partial u \partial u}{\partial x \partial t}\right|_{0} ^{L},
$$

where the total energy E is the sum of the kinetic energy, defined by $\int_{0}^{L} \frac{1}{2}\left(\frac{\partial u}{\partial t}\right)^{2} d x$, and the potential energy, defined by $\int_{0}^{L} \frac{c^{2}}{2}\left(\frac{\partial u}{\partial u}\right)^{2} d x$.
4.4.10. What happens to the total energy E of a vibrating string (see Exercise 4.4.9)

4 (a) If $u(0, T)=0$ and $u(L, t)=0$
4 (b) If $\frac{\partial u}{\partial x}(0, t)=0$ and $u(L, t)=0$
6 (c) If $u(0, t)=0$ and $\frac{\partial u}{\partial x}(L, t)=-\gamma u(L, t)$ with $\gamma>0$
3 (d) If $\gamma<0$ in part (c)
5.3.2. Consider

$$
\rho_{\partial t^{2}}^{\partial^{2} u}=T_{0}^{\partial^{2} u} \frac{x^{2}}{}+\alpha u+\beta \frac{\partial u}{\partial t}
$$

3 (a) Give a brief physical interpretation. What signs must α and β have to be physical?
(b) Allow ρ, α, β to be functions of x. Show that separation of variables works only if $\beta=c \rho$, where c is a constant.
(c) If $\beta=c \rho$, show that the spatial equation is a Sturm-Liouville differen6 taal equation. Solve the time equation.
*5.3.3. Consider the non-Sturm-Liouville differential equation

$$
\begin{aligned}
& d^{2} \phi \\
& d x^{2}
\end{aligned}{ }^{-}(x) \frac{d \phi}{d x}+[\lambda \beta(x)+\gamma(x)] \phi=0
$$

Multiply this equation by $H(x)$. Determine $H(x)$ such that the equation may be reduced to the standard Sturm-Liouville form:

$$
\frac{d}{d x}\left[p(x) \frac{d \phi}{d x}\right]+[\lambda \sigma(x)+q(x)] \phi=0
$$

- Given $\alpha(x), \beta(x)$, and $\gamma(x)$, what are $p(x), \sigma(x)$, and $q(x)$?

HW 5 (cont)

5.3.9. Consider the eigenvalue problem

$$
\begin{equation*}
x^{2} \frac{d^{2} \phi}{d x^{2}}+x \frac{d \phi}{d x}+\lambda \phi=0 \quad \text { with } \quad \phi(1)=0, \quad \text { and } \quad \phi(b)=0 . \tag{5.3.10}
\end{equation*}
$$

3 (a) Show that multiplying by $1 / x$ puts this in the Sturm-Liouville form. (This multiplicative factor is derived in Exercise 5.3.3.)
5 (b) Show that $\lambda \geq 0$.
5^{*} (c) Since (5.3.10) is an equidimensional equation, determine all positive eigenvalues. Is $\lambda=0$ an eigenvalue? Show that there is an infinite number of eigenvalues with a smallest, but no largest.
4 (d) The eigenfunctions are orthogonal with what weight according to Sturm-Liouville theory? Verify the orthogonality using properties of integrals.
(e) Show that the nth eigenfunction has $n-1$ zeros.
5.4.5. Consider

$$
\rho \frac{\partial u^{2}}{\partial t^{2}}=T_{0} \frac{\partial^{2} u}{\partial x^{2}}+\alpha u,
$$

where $\rho(x)>0, \alpha(x)<0$, and T_{0} is constant, subject to

$$
u(0, t)=0 \quad u(x, 0)=f(x)
$$

$$
u(L, t)=0 \quad \frac{\partial u}{\partial t}(x, 0)=g(x) .
$$

Assume that the appropriate eigenfunctions are known. Solve the initial value problem.

