Example for solving and graphing with step function:

$F:=t \mapsto t-t$ Heaviside $(t-4)$
$\stackrel{>}{ }>\operatorname{plot}(F(t), t=0 . .8)$;

$$
\begin{align*}
& \underline{L} d e:=\operatorname{diff}(y(t), t \$ 2)-2 \cdot \operatorname{diff}(y(t), t)+2 \cdot y(t)=F(t) \\
& \qquad d e:=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} y(t)-2 \frac{\mathrm{~d}}{\mathrm{~d} t} y(t)+2 y(t)=t-t \text { Heaviside }(t-4) \tag{2}
\end{align*}
$$

$\overline{>}>$ solve $(\{$ de, $y(0)=2, \mathrm{D}(y)(0)=4\}, y(t))$;
$y(t)=2 \mathrm{e}^{t} \sin (t)+\frac{3 \mathrm{e}^{t} \cos (t)}{2}$
$+\frac{\left((5 \cos (t-4)-4 \sin (t-4)) \mathrm{e}^{t-4}-t-1\right) \text { Heaviside }(t-4)}{2}+\frac{t}{2}+\frac{1}{2}$
$\left[\begin{array}{l}>z:=\text { unapply }(r h s(\%), t) ; \\ z:=t \mapsto 2 \mathrm{e}^{t} \sin (t)+\frac{3 \mathrm{e}^{t} \cos (t)}{2}\end{array}\right.$
$+\frac{\left((5 \cos (t-4)-4 \sin (t-4)) \mathrm{e}^{t-4}-t-1\right) \text { Heaviside }(t-4)}{2}+\frac{t}{2}+\frac{1}{2}$
$\gg \operatorname{plot}(z(t), t=0 . .6)$;

