\qquad

Note: For full credit you must show intermediate steps in your calculations.

1. (4pts) Consider the initial value problem (IVP):

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
0 & 1 \\
6 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}, \quad\binom{x_{1}(0)}{x_{2}(0)}=\binom{3}{4} .
$$

Find the general solution to this problem, create a phase portrait, and solve the initial value problem. Describe the qualitative behavior shown in the phase portrait. (Slides 19-22)
Note: Qualitative behavior is e.g., stable node, unstable spiral, saddle point, center, etc.
2. (4pts) Consider the differential equation:

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

Find the general solution to this problem and create a phase portrait. Describe the qualitative behavior shown in the phase portrait. (Slides 44-49)
3. (4pts) Consider the differential equation with the parameter α :

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
\alpha & 2 \\
-2 & 0
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

Find the general solutions and create phase portraits for the values $\alpha=-6$ and $\alpha=3$. Describe the qualitative behavior shown in the phase portraits. (Slides 50-54)
4. (4pts) Consider the differential equations $\dot{\mathbf{x}}=J_{i} \mathbf{x}$, where J_{i} is each of the following matrices:

$$
J_{1}=\left(\begin{array}{cc}
2 & -1 \\
4 & -3
\end{array}\right), \quad J_{2}=\left(\begin{array}{cc}
5 & 3 \\
-2 & 2
\end{array}\right), \quad J_{3}=\left(\begin{array}{cc}
1 & -3 \\
2 & -5
\end{array}\right), \quad J_{4}=\left(\begin{array}{cc}
3 & -2 \\
6 & -3
\end{array}\right),
$$

Use the diagram on Slide 55 to classify the qualitative behavior for these differential equations ($J_{i}, i=1,2,3,4$) without solving the equations.

