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Note: For full credit you must show intermediate steps in your calculations.

1. (27pts) Consider the following initial value problems. Find the unique solution and show how
you ohtained your solution.
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2. (20pts) Consider the initial value problem:

‘fl‘i’ 21+ 205, y(0)=1.

a. Solve this initial value problem.
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b. Use Euler’s method to simulate the solution for ¢ € [0, 2] with a stepsize of h = 0.5. Write the
specific Euler’s formula that you use to compute your approximate solution ¥, (with the specific h

and f(t,y)), then show all of the steps, yn, from t =0to (= 2
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c. Compute the percent error between Euler approximation and the actual solution at { = 2
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3. (15pts) A good German Pilsner beer should be served at 40°F. At 11 AM, you grab some bottles
that have been sitting in a warm garage (80°F) and plunge them into a bucket of ice water (32°F).
At 11:30 AM, you find the temperature of the beer to be 65°F. Let T'(t) be the temperature of the
beer, and assume the bottles of beer satisty Newton’s Law of Cooling,
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where T, is the temperature of the water in the ice bucket, ¢ is in minutes, 7" is the temperature

in °F, and k is the coefficient of heat transfer to be determined (to 4 significant figures.) At what
time should you serve this beer.
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Length of Time until properly cooled = /%3, § min

Clock Time for serving = 255 IFr (Give the hour and minutes.)
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4. (20pts) a. A population of animals is studied over a period of days. One group of researchers
decides that the appropriate model describing this population satisfies the differential equation:

%g = (0.05 — 0.00088¢)P,  P(0) = 64.

Solve this differential equation. Find when this model predicts that the population achieves a
maximum and what that maximum population is.
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b. A second group of researchers thinks that a different model better describes the population
of these animals. Their model satisfies the differential equation:

dP
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Solve this differential equation. Also, find when this model predicts that the population achieves a
maximum and what that maximum population is.
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5. (18pts) a. In many population studies, the animals follow the logistic growth model. Suppose
that along a certain river it is found that the population dynamics for a particular species of game
fish satisfies the differential equation
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where ¢ is in years and P is the density of fish/100 m of river. Suppose that this river is stocked
with an initial population of fish P(0) = 10 for each 100 m of river. Solve this initial value problem
to determine the population of fish at any time after the river is stocked.
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b. It happens that this is a very popular species of game fish. Assume that h is the intensity of

fishing with fish being caught and removed proportional the existing population with the model
dP
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Let h = 0.1 and sketch a graph of the right hand side of the differential equation, then draw

the phase portrait with arrows and circles (unstable(open circle); stable(filled circle)). Find any

equilibria and determine their stability.
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