Numerical Analysis and Computing

Lecture Notes \＃16
－Matrix Algebra－
Norms of Vectors and Matrices
Eigenvalues and Eigenvectors
Iterative Techniques

Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉

Department of Mathematics
Dynamical Systems Group
Dynamical Systems Group
Computational Sciences Research Center San Diego State University San Diego，CA 92182－7720
Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉 Matrix Algebra

Matrix Iterative Methods
Jacobive Methods
Jateration
Gauss－Seidel Iteration
Matrix Application－Truss

Matrix Application－TrussMatrix Iterative Methods
－Basic DefinitionsIterative Methods
－ExampleJacobi Iteration
（5）
Gauss－Seidel Iteration
（6）SOR Method

Matrix Application－Truss

Trusses are lightweight structures capable of carrying heavy loads， e．g．，roofs．

The truss on the previous slide has the following properties：
（1）Fixed at Joint 1
（2）Slides at Joint 4
（3）Holds a mass of $10,000 \mathrm{~N}$ at Joint 3
（9）All the Joints are pin joints
（0）The forces of tension are indicated on the diagram

At each joint the forces must add to the zero vector.

Joint	Horizontal Force	Vertical Force
1	$-F_{1}+\frac{\sqrt{2}}{2} f_{1}+f_{2}=0$	$\frac{\sqrt{2}}{2} f_{1}-F_{2}=0$
2	$-\frac{\sqrt{2}}{2} f_{1}+\frac{\sqrt{3}}{2} f_{4}=0$	$-\frac{\sqrt{2}}{2} f_{1}-f_{3}-\frac{1}{2} f_{4}=0$
3	$-f_{2}+f_{5}=0$	$f_{3}-10,000=0$
4	$-\frac{\sqrt{3}}{2} f_{4}-f_{5}=0$	$\frac{1}{2} f_{4}-F_{3}=0$

This creates an 8×8 linear system with 47 zero entries and 17 nonzero entries.

Sparse matrix - Solve by iterative methods

Definition

A Vector norm on \mathbb{R}^{n} is a function $\|\cdot\|$ mapping $\mathbb{R}^{n} \rightarrow \mathbb{R}$ with the following properties:
(i) $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$
(ii) $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=\mathbf{0}$
(iii) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^{n}$ (scalar multiplication)
(iv) $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ (triangle inequality)

Earlier we used iterative methods to find roots of equations

$$
f(x)=0
$$

or fixed points of

$$
x=g(x)
$$

The latter requires $\left|g^{\prime}(x)\right|<1$ for convergence.
Want to extend to n-dimensional linear systems.

Joe Mahaffy, 〈mahaffy@math.sdsu.edu〉	Matrix Algebra	- (6/51)
Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method	Basic Definitions	

Common Norms

The I_{1} norm is given by

$$
\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

The l_{2} norm or Euclidean norm is given by

$$
\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}
$$

The I_{∞} norm or Max norm is given by

$$
\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

The Euclidean norm represents the usual notion of distance (Pythagorean theorem for distance).

We need to show the triangle inequality for $\|\cdot\|_{2}$ ．

Theorem（Cauchy－Schwarz）

For each $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$

$$
\mathbf{x}^{t} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}=\|\mathbf{x}\|_{2} \cdot\|\mathbf{y}\|_{2}
$$

Joe Mahafy，＜mahaffyemath．sdsur ．edu）	Matrix Agebra	－（9／51）
	Basic Definitions	

Definition

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ ，the I_{2} and I_{∞} distances between \mathbf{x} and \mathbf{y} is a function $\|\cdot\|$ mapping $\mathbb{R}^{n} \rightarrow \mathbb{R}$ with the following properties：are defined by

$$
\begin{aligned}
\|\mathbf{x}-\mathbf{y}\|_{2} & =\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2} \\
\|\mathbf{x}-\mathbf{y}\|_{\infty} & =\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|
\end{aligned}
$$

Cauchy－Schwarz．

This result gives for each $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & =\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{2} \\
& =\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i=1}^{n} x_{i} y_{i}+\sum_{i=1}^{n} y_{i}^{2} \\
& \leq\|\mathbf{x}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|^{2}
\end{aligned}
$$

Taking the square root of the above gives the Triangle Inequality

Joe Mahaffy，\langle mahaffy＠math．sdsu．edu〉	Matrix Algebra
Matrix Application－Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss－Seidel Iteration SOR Method	Basic Definitions

[^0]Also，we need the concept of convergence in n－dimensions．

Definition

A sequence of vectors $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{\infty}$ in \mathbb{R}^{n} is said to converge to \mathbf{x} with respect to norm $\|\cdot\|$ if given any $\epsilon>0$ there exists an integer $N(\epsilon)$ such that

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}\right\|<\epsilon \text { for all } k \geq N(\epsilon)
$$

We need to extend our definitions to include matrices．

Definition

A Matrix Norm on the set of all $n \times n$ matrices is a real－valued function $\|\cdot\|$ ，defined on this set satisfying for all $n \times n$ matrices A and B and all real numbers α ．
（i）$\|A\| \geq 0$
（ii）$\|A\|=0$ if and only if A is 0 （all zero entries）
（iii）$||\alpha A\|=|\alpha|| | A\|$（scalar multiplication）
（iv）$\|A+B\| \leq\|A\|+\|B\|$（triangle inequality）
（v）$\|A B\| \leq\|A\|\|B\|$
The distance between $n \times n$ matrices A and B with respect to this matrix norm is $\|A-B\|$ ．
It can be shown that all norms on \mathbb{R}^{n} are equivalent．

Natural Matrix Norm

Theorem

If $\|\cdot\|$ is a vector norm on \mathbb{R}^{n} ，then

$$
\|A\|=\max _{\|x\|=1}\|A x\|
$$

is a matrix norm．

This is the natural or induced matrix norm associated with the vector norm．

For any $\mathbf{z} \neq \mathbf{0}, \mathbf{x}=\frac{\mathbf{z}}{\|\mathbf{z}\|}$ is a unit vector

$$
\max _{\|x\|=1}\|A x\|=\max _{\|z\| \neq 0}\left\|A\left(\frac{\mathbf{z}}{\|\mathbf{z}\|}\right)\right\|=\max _{\|z\| \neq 0} \frac{\|A \mathbf{z}\|}{\|\mathbf{z}\|}
$$

An $n \times m$ matrix is a function that takes m－dimensional vectors into n－dimensional vectors．

For square matrices A ，we have $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ ．
Certain vectors are parallel to $A \mathbf{x}$ ，so $A \mathbf{x}=\lambda \mathbf{x}$ or $(A-\lambda /) \mathbf{x}=\mathbf{0}$ ．
These values λ ，the eigenvalues，are significant for convergence of iterative methods．

		5050
Joe Mahaffy，〈mahaffy ${ }^{\text {cmath．sdsu．edu〉 }}$	Matrix Algebra	－（17／51）
Matrix Application－Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss－Seidel Iteration SOR Method	Basic Definitions	

Geometry of Eigenvalues and Eigenvectors

If \mathbf{x} is an eigenvector associated with λ ，then $A \mathbf{x}=\lambda \mathbf{x}$ ，so the matrix A takes the vector \mathbf{x} into a scalar multiple of itself．

If λ is real and $\lambda>1$ ，then A has the effect of stretching \mathbf{x} by a factor of λ ．

If λ is real and $0<\lambda<1$ ，then A has the effect of shrinking \mathbf{x} by a factor of λ ．

If $\lambda<0$ ，the effects are similar，but the direction of $A \mathbf{x}$ is reversed．

Definition

If A is an $n \times n$ matrix，the characteristic polynomial of A is defined by

$$
p(\lambda)=\operatorname{det}(A-\lambda I)
$$

Definition

If p is the characteristic polynomial of the matrix A ，the zeroes of p are eigenvalues（or characteristic values）of A ．If λ is an eigenvalue of A and $\mathbf{x} \neq \mathbf{0}$ satisfies $(A-\lambda I) \mathbf{x}=\mathbf{0}$ ，then \mathbf{x} is an eigenvector（or characteristic vector）of A corresponding to the eigenvalue λ ．

Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉	Matrix Algebra	－（18／51）
Matrix Application－Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss－Seidel Iteration SOR Method	Basic Definitions	

[^1]The spectral radius，$\rho(A)$ ，provides a valuable measure of the eigenvalues，which helps determine if a numerical scheme will converge．

Definition

The spectral radius，$\rho(A)$ ，of a matrix A is defined by

$$
\rho(A)=\max |\lambda|,
$$

where λ is an eigenvalue of A ．

Theorem

If A is an $n \times n$ matrix
（i）$\|A\|_{2}=\left(\rho\left(A^{t} A\right)\right)^{1 / 2}$
（ii）$\rho(A) \leq\|A\|$ for any natural norm $\|\cdot\|$ ．
Proof of（ii）：Let $\|\mathbf{x}\|$ be a unit eigenvector or A with respect to the eigenvalue λ

$$
|\lambda|=|\lambda|\|\mathbf{x}\|=\|\lambda \mathbf{x}\|=\|A \mathbf{x}\| \leq\|A\|\|\mathbf{x}\|=\|A\| .
$$

Thus，

$$
\rho(A)=\max |\lambda| \leq\|A\| .
$$

If A is symmetric，then $\rho(A)=\|A\|_{2}$ ．
Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉 Matrix Algebra
Matrix Iterative Methods
Iterative Methods Gauss－Seidel Iteration

Convergence of Matrix

An interesting and useful result：For any matrix A and any $\epsilon>0$ ，there exists a natural norm $\|\cdot\|$ with the property that

$$
\rho(A) \leq\|A\|<\rho(A)+\epsilon .
$$

So $\rho(A)$ is the greatest lower bound for the natural norms on A ．

Theorem

The following statements are equivalent，
（i）A is a convergent matrix．
（ii） $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0$ for some natural norm．
（iii） $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0$ for all natural norms．
（iv）$\rho(A)<1$ ．
（v） $\lim _{n \rightarrow \infty} A^{n} \mathbf{x}=\mathbf{0}$ for every \mathbf{x} ．

$$
A^{k}=\left(\begin{array}{cc}
\frac{1}{2^{k}} & 0 \\
\frac{k}{2^{k+1}} & \frac{1}{2^{k}}
\end{array}\right) \rightarrow 0 .
$$

Gaussian elimination and other direct methods are best for small dimensional systems．

Jacobi and Gauss－Seidel iterative methods were developed in late $18^{\text {th }}$ century to solve

$$
A \mathbf{x}=\mathbf{b}
$$

by iteration．
Iterative methods are more efficient for large sparse matrix systems，both in computer storage and computation．

Common examples include electric circuits，structural mechanics， and partial differential equations．

Joe Mahaffy，〈mahaffy ©math．sdsu．edu〉	Matrix Algebra	－（25／51）
Matrix Application－Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss－Seidel Iteration SOR Method	Example	
Illustrative Example		（1 of 4）

Consider the following linear system $A \mathbf{x}=\mathbf{b}$

$$
\begin{array}{rlrl}
10 x_{1}-x_{2}+2 x_{3} & & 6 \\
-x_{1}+11 x_{2} & x_{3}+3 x_{4} & =25 \\
2 x_{1}- & x_{2}+10 x_{3}-x_{4} & =-11 \\
& 3 x_{2} & -x_{3}+8 x_{4} & =15
\end{array}
$$

This has the unique solution $\mathbf{x}=(1,2,-1,1)^{T}$ ．

The iterative scheme starts with an initial guess， $\mathbf{x}^{(0)}$ to the linear system

$$
A \mathbf{x}=\mathbf{b}
$$

Transform this system into the form

$$
\mathbf{x}=T \mathbf{x}+\mathbf{c}
$$

The iterative scheme becomes

$$
\mathbf{x}^{k}=T \mathbf{x}^{k-1}+\mathbf{c}
$$

The previous system is easily converted to the form

$$
\mathbf{x}=T \mathbf{x}+\mathbf{c}
$$

by solving for each x_{i} ．

Thus，the system $A \mathbf{x}=\mathbf{b}$ becomes

$$
\mathbf{x}=T \mathbf{x}+\mathbf{c}
$$

with

$$
T=\left[\begin{array}{cccc}
0 & \frac{1}{10} & -\frac{1}{5} & 0 \\
\frac{1}{11} & 0 & \frac{1}{11} & -\frac{3}{11} \\
-\frac{1}{5} & \frac{1}{10} & 0 & \frac{1}{10} \\
0 & -\frac{3}{8} & \frac{1}{8} & 0
\end{array}\right] \text { and } \mathbf{c}=\left[\begin{array}{c}
\frac{3}{5} \\
\frac{25}{11} \\
-\frac{11}{10} \\
\frac{15}{8}
\end{array}\right]
$$

		SDS0
Joe Mahaffy，〈mahaffy ${ }^{\text {amath．sdsu．edu〉 }}$	Matrix Algebra	－（29／51）
Matrix Application－Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss－Seidel Iteration SOR Method		

It takes 10 iterations to converge to a tolerance of 10^{-3} ．Error is given by $\frac{\left\|\left.\right|^{(k)}-\mathbf{x}^{(k-1)}\right\|_{\infty}}{\left\|\mathbf{x}^{(k)}\right\|_{\infty}}$
With an initial guess of $\mathbf{x}=(0,0,0,0)^{T}$ ，we have

$x_{1}^{(1)}$	$=$	$\frac{1}{10} x_{2}^{(0)}$	$-\frac{1}{5} x_{3}^{(0)}$	$+\frac{3}{5}$	$=0.6000$	
$x_{2}^{(1)}$	$=$	$\frac{1}{11} x_{1}^{(0)}$		$+\frac{1}{11} x_{3}^{(0)}$	$-\frac{3}{11} x_{x}^{(0)}$	$+\frac{25}{11}$

The example above illustrates the Jacobi iterative method To solve the linear system

$$
A \mathbf{x}=\mathbf{b}
$$

Find x_{i}（for $a_{i i} \neq 0$ ）by iterating

$$
x_{i}^{(k)}=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left(\frac{-a_{i j} x_{j}^{(k-1)}}{a_{i i}}\right)+\frac{b_{i}}{a_{i i}} \quad \text { for } i=1, \ldots, n
$$

The iterative scheme becomes

$$
\begin{aligned}
& \begin{array}{llllll}
x_{1}^{(k)} & = & \frac{1}{10} x_{2}^{(k-1)} & -\frac{1}{5} x_{3}^{(k-1)} & & +\frac{3}{5} \\
x_{2}^{(k)} & =\frac{1}{11} x_{1}^{(k-1)} & & +\frac{1}{11} x_{3}^{(k-1)} & -\frac{3}{11} x_{4}^{(k-1)} & +\frac{25}{11}
\end{array} \\
& x_{3}^{(k)}=-\frac{1}{5} x_{1}^{(k-1)}+\frac{1}{10} x_{2}^{(k-1)}+\frac{1}{10} x_{4}^{(k-1)}-\frac{11}{10} \\
& x_{4}^{(k)}=-\frac{\frac{3}{8} x_{2}^{(k-1)}}{}+\frac{1}{8} x_{3}^{(k-1)}+\frac{15}{8}
\end{aligned}
$$

Jacobi Iteration－Matrix Form
If A is given by

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

Split this into

$$
\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & a_{n n}
\end{array}\right]-\left[\begin{array}{cccc}
0 & \cdots & \cdots & 0 \\
-a_{21} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
-a_{n 1} & \cdots & -a_{n, n-1} & 0
\end{array}\right]-\left[\begin{array}{cccc}
0 & -a_{12} & \cdots & -a_{1 n} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & -a_{n-1, n} \\
0 & \cdots & \cdots & 0
\end{array}\right]
$$

or

$$
A=D-L-U
$$

We are solving $A \mathbf{x}=\mathbf{b}$ with $A=D-L-U$ from above．
It follows that：

$$
D \mathbf{x}=(L+U) \mathbf{x}+\mathbf{b}
$$

or

$$
\mathbf{x}=D^{-1}(L+U) \mathbf{x}+D^{-1} \mathbf{b}
$$

The Jacobi iteration method becomes

$$
\mathbf{x}=T_{j} \mathbf{x}+\mathbf{c}_{j}
$$

where $T_{j}=D^{-1}(L+U)$ and $\mathbf{c}_{j}=D^{-1} \mathbf{b}$ ．

Joe Mahaffy，＜mahaffy ymath．sdsu．edu ${ }^{\text {c }}$	Matrix Algebra	－（33／51）
Matrix Application－Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss－Seidel Iteration SOR Method		

Gauss－Seidel Iteration

One possible improvement is that $\mathbf{x}^{(k-1)}$ are used to compute $x_{i}^{(k)}$ However，for $i>1$ ，the values of $x_{1}^{(k)}, \ldots x_{i-1}^{(k)}$ are already computed and should be improved values．
If we use these updated values in the algorithm we obtain：
$x_{i}^{(k)}=-\sum_{j=1}^{i-1}\left(\frac{a_{i j} x_{j}^{(k)}}{a_{i i}}\right)-\sum_{j=i+1}^{n}\left(\frac{a_{i j} x_{j}^{(k-1)}}{a_{i i}}\right)+\frac{b_{i}}{a_{i i}} \quad$ for $i=1, \ldots, n$
This modification is called the Gauss－Seidel iterative method．

If any of the $a_{i i}=0$ and the matrix A is nonsingular，then the equations can be reordered so that all $a_{i i} \neq 0$ ．

Convergence（if possible）is accelerated by taking the $a_{i i}$ as large as possible．

Joe Mahaffy，	Smahaffy＠math．sdsu．edu〉	Matrix Algebra
Matrix Application－Truss		
Matrix Iterative Methods		
Iterative Methods		
Jacobi Iteration		
Gauss－Seidel Iteration		
SOR Method		

Return to Illustrative Example
The Gauss－Seidel iterative scheme becomes

With an initial guess of $\mathbf{x}=(0,0,0,0)^{T}$ ，it takes 5 iterations to converge to a tolerance of 10^{-3} ．
Again the error is given by

$$
\frac{\left\|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right\|_{\infty}}{\left\|\mathbf{x}^{(k)}\right\|_{\infty}}
$$

With the same definitions as before，$A=D-L-U$ ，we can write the equation $A \mathbf{x}=\mathbf{b}$ as

$$
(D-L) \mathbf{x}^{(k)}=U \mathbf{x}^{(k-1)}+\mathbf{b}
$$

The Gauss－Seidel iterative method becomes

$$
\mathbf{x}^{(k)}=\underbrace{(D-L)^{-1} U}_{T_{g}} \mathbf{x}^{(k-1)}+\underbrace{(D-L)^{-1} \mathbf{b}}_{\mathbf{c}_{g}}
$$

or

$$
\mathbf{x}^{(k)}=T_{g} \mathbf{x}^{(k-1)}+\mathbf{c}_{g}
$$

The matrix $D-L$ is nonsingular if and only if $a_{i i} \neq 0$ for each $i=1, \ldots, n$ ．

Joe Mahaffy，〈mahaffy＠math．sdsu．edu
Matrix Algebra

We want convergence criterion for the general iteration scheme of the form

$$
\mathbf{x}^{(k)}=T \mathbf{x}^{(k-1)}+\mathbf{c}, \quad k=1,2, \ldots
$$

Lemma

If the spectral radius，$\rho(T)$ satisfies $\rho(T)<1$ ，then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=I+T+T^{2}+\ldots=\sum_{j=0}^{\infty} T^{j}
$$

The previous lemma is important in proving the main convergence theorem．

Usually the Gauss－Seidel iterative method converges faster than the Jacobi method．

Examples do exist where the Jacobi method converges and the Gauss－Seidel method fails to converge．

Also，examples exist where the Gauss－Seidel method converges and the Jacobi method fails to converge．

Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉	Matrix Algebra	－（38／51）
Matrix Application－Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss－Seidel Iteration SOR Method		
Convergence Theorems		（2 of 3 ）

Theorem
For any $\mathbf{x}^{(0)} \in \mathbb{R}^{n}$ ，the sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=0}^{\infty}$ defined by

$$
\mathbf{x}^{(k)}=T \mathbf{x}^{(k-1)}+\mathbf{c}, \quad k=1,2, \ldots
$$

converges to the unique solution of

$$
\mathbf{x}=T \mathbf{x}+\mathbf{c}
$$

if and only if $\rho(T)<1$ ．
The proof of the theorem helps establish error bounds from the iterative methods．

Corollary

If $\|T\|<1$ for any natural matrix norm and \mathbf{c} is a given vector， then the sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=0}^{\infty}$ defined by

$$
\mathbf{x}^{(k)}=T \mathbf{x}^{(k-1)}+\mathbf{c}, \quad k=1,2, \ldots
$$

coverges for any $\mathbf{x}^{(0)} \in \mathbb{R}^{n}$ to a vector $\mathbf{x} \in \mathbb{R}^{n}$ and the following error bounds hold：
（i）$\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\| \leq\|T\|\left\|^{k}\right\| \mathbf{x}-\mathbf{x}^{(0)} \|$
（ii）$\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\| \leq \frac{\|T\|^{k}}{1-\|T\|^{k}}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\|$

Definition

The $n \times n$ matrix A is said to be strictly diagonally dominant when

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|
$$

holds for each $i=1,2, \ldots n$ ．

The Jacobi method is given by：

$$
\mathbf{x}^{(k)}=T_{j} \mathbf{x}^{(k-1)}+\mathbf{c}_{j},
$$

where $T_{j}=D^{-1}(L+U)$ ．
The Gauss－Seidel method is given by：

$$
\mathbf{x}^{(k)}=T_{g} \mathbf{x}^{(k-1)}+\mathbf{c}_{g},
$$

where $T_{g}=(D-L)^{-1} U$ ．
These iterative schemes converge if

$$
\rho\left(T_{j}\right)<1 \quad \text { or } \quad \rho\left(T_{g}\right)<1
$$

Rate of Convergence

Theorem

If A is strictly diagonally dominant，then for any choice of $\mathbf{x}^{(0)}$ ， both the Jacobi and Gauss－Seidel methods give a sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=0}^{\infty}$ that converge to the unique solution of

$$
A \mathbf{x}=\mathbf{b} .
$$

The rapidity of convergence is seen from previous Corollary：

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}\right\| \approx \rho(T)^{k}\left\|\mathbf{x}^{(0)}-\mathbf{x}\right\|
$$

Theorem（Stein－Rosenberg）
If $a_{i k}<0$ for each $i \neq k$ and $a_{i i}>0$ for each $i=1, \ldots n$ ，then one and only one of the following hold：
（a） $0 \leq \rho\left(T_{g}\right)<\rho\left(T_{j}\right)<1$ ，
（b） $1<\rho\left(T_{j}\right)<\rho\left(T_{g}\right)$ ，
（c）$\rho\left(T_{j}\right)=\rho\left(T_{g}\right)=0$ ，
（d）$\rho\left(T_{j}\right)=\rho\left(T_{g}\right)=1$ ．
Part a implies that when one method converges，then both converge with the Gauss－Seidel method converging faster． Part b implies that when one method diverges，then both diverge with the Gauss－Seidel divergence being more pronounced．

Modify Gauss－Seidel Iteration

The Gauss－Seidel method satisfies：
$x_{i}^{(k)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right) \quad$ for $i=1, \ldots, n$
which can be written：

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\frac{r_{i i}}{a_{i i}}
$$

We modify this to

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\omega \frac{r_{i i}}{a_{i i}}
$$

where certain choices of $\omega>0$ reduce the norm of the residual vector and consequently improve the rate of convergence．

Definition

Suppose that $\tilde{\mathbf{x}} \in \mathbb{R}^{n}$ is an approximation to the solution of the linear system，$A \mathbf{x}=\mathbf{b}$ ．The residual vector for $\tilde{\mathbf{x}}$ with respect to this system is $\mathbf{r}=\mathbf{b}-A \tilde{\mathbf{x}}$ ．

We want residuals to converge as rapidly as possible to $\mathbf{0}$ ．
The Gauss－Seidel method chooses $\mathbf{x}_{i+1}^{(k)}$ so that the $i^{t h}$ component of $\mathbf{r}_{i+1}^{(k)}$ is zero．
Making one coordinate zero is often not the optimal way to reduce the norm of the residual， $\mathbf{r}_{i+1}^{(k)}$ ．

Matrix Application－Truss
Matrix Iterative Methods
Iterative Methods
Jacobi Iteration
Gauss－Seidel Iteration
SOR Method

SOR Method

The method from previous slide are called relaxation methods． When $0<\omega<1$ ，the procedures are called under－relaxation methods and can be used to obtain convergence of systems that fail to converge by the Gauss－Seidel method．
For choices of $\omega>1$ ，the procedures are called over－relaxation methods，abbreviated SOR for Successive Over－Relaxation methods，which can accelerate convergence．
The SOR Method is given by：

$$
x_{i}^{(k)}=(1-\omega) x_{i}^{(k-1)}+\frac{\omega}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right)
$$

Rearranging the SOR Method：
$a_{i i} x_{i}^{(k)}+\omega \sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}=(1-\omega) a_{i i} x_{i}^{(k-1)}-\omega \sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+\omega b_{i}$
In vector form this is

$$
(D-\omega L) \mathbf{x}^{(k)}=[(1-\omega) D+\omega U] \mathbf{x}^{(k-1)}+\omega \mathbf{b}
$$

or

$$
\mathbf{x}^{(k)}=(D-\omega L)^{-1}[(1-\omega) D+\omega U] \mathbf{x}^{(k-1)}+\omega(D-\omega L)^{-1} \mathbf{b}
$$

Let $T_{\omega}=(D-\omega L)^{-1}[(1-\omega) D+\omega U]$ and $\mathbf{c}_{\omega}=\omega(D-\omega L)^{-1} \mathbf{b}$ ， then

$$
\mathbf{x}^{(k)}=T_{\omega} \mathbf{x}^{(k-1)}+\mathbf{c}_{\omega} .
$$

SOR Theorems

Theorem

If A is positive definite and tridiagonal，then $\rho\left(T_{g}\right)=\left[\rho\left(T_{j}\right)\right]^{2}<1$ and the optimal choice of ω for the SOR method is

$$
\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{j}\right)\right]^{2}}} .
$$

with this choice of ω ，we have $\rho\left(T_{\omega}\right)=\omega-1$ ．

Theorem（Kahan）

If $a_{i i} \neq 0$ for each $i=1, \ldots, n$ ，then $\rho\left(T_{\omega}\right) \geq|\omega-1|$ ．
This implies that the SOR method can converge only if $0<\omega<2$ ．

Theorem（Ostrowski－Reich）

If A is a positive definite matrix and $0<\omega<2$ ，then the SOR method converges for any choice of initial approximate vector， $\mathbf{x}^{(0)}$

[^0]: Convergence

[^1]: Spectral Radius

