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Matrix Application - Truss

Matrix Application - Truss
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Trusses are lightweight structures capable of carrying heavy loads,

e.g., roofs.

TRUSS

4
2 f5
F2 10,000 N
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Matrix Application - Truss

Physics of Trusses

The truss on the previous slide has the following properties:

O Fixed at Joint 1

© Slides at Joint 4

© Holds a mass of 10,000 N at Joint 3
@ All the Joints are pin joints

© The forces of tension are indicated on the diagram
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Matrix Application - Truss

Static Equilibrium

At each joint the forces must add to the zero vector.

Joint Horizontal Force Vertical Force
1 —A+%A+h=0  PR-FH=0
2 —BRA+PR=0 —Lf-K-1f=0
3 —fHh+1f=0 f3 — 10,000 =0
4 =P f=0 2fa—F3=0

This creates an 8 x 8 linear system with 47 zero entries and 17
nonzero entries.

Sparse matrix — Solve by iterative methods

SDSO
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Matrix Iterative Methods

Basic Definitions

Basic Definitions

Matrix Iterative Methods

Basic Definitions

Earlier Iterative Schemes

Earlier we used iterative methods to find roots of equations

or fixed points of
x = g(x)
The latter requires |g’(x)| < 1 for convergence.

Want to extend to n-dimensional linear systems.

SDSO
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Matrix Iterative Methods

Basic Definitions

Common Norms

Definition

A Vector norm on R" is a function || - || mapping R” — R with the
following properties:

(i) [Ix|]] > 0 for all x € R"

(i) ||x|| =0 if and only if x =0

(iii) ||ax|| = || ||x]| for all @ € R and x € R" (scalar
multiplication)

(iv) [Ix +y|| < [|x|| + |ly]| for all x,y € R" (triangle inequality)

Matrix Algebra — (7/51)
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The /1 norm is given by
n
Ixll =3 I
i=1

The h norm or Euclidean norm is given by
1

n 2
2
Ixll2= (D x
i=1

The I, norm or Max norm is given by

[IX[[oo = max |xi|
1<i<n
The Euclidean norm represents the usual notion of distance
(Pythagorean theorem for distance). 5050

Joe Mahaffy, (mahaffyOmath.sdsu.edu) Matrix Algebra — (8/51)



Matrix Iterative Methods Matrix Iterative Methods

Basic Definitions Basic Definitions

Triangle Inequality Triangle Inequality - Proof

Cauchy-Schwarz.

We need to show the triangle inequality for || - ||2. This result gives for each x,y € R”

Theorem (Cauchy-Schwarz) n

2 _ 2

For each x,y € R" Ix+yl[* = Z(Xi+)’i)
i=1

n n n
n 1/2 = ZX12+2ZXI_VI+Z.VI2
> VP = [|x[|2 - [ly]|2 i=1 i=1 i=1
i=1

1/2

n n
x'y = in)/i < ZX?
i=1 i=1

< Il +211xl1lyll + 1yl[?

Taking the square root of the above gives the Triangle Inequality
SDSO U Jrso
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Matrix Iterative Methods Matrix Iterative Methods

Basic Definitions Basic Definitions

Distance Convergence

Definition Also, we need the concept of convergence in n-dimensions.

If x,y € R", the |, and / distances between x and y is a function

|| - || mapping R" — R with the following properties:are defined by
A sequence of vectors {x(K)}2° in R” is said to converge to x
12 with respect to norm || - || if given any € > 0 there exists an integer
n

N h th

HX _ sz _ Z(Xi _)’i)2 (6) such that

i=1 k
vl = meacseds—1 IxK) —x|| < ¢ forall k> N(e).

SDSO SDSO
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Matrix Iterative Methods

Basic Definitions

Basic Theorems

Matrix Iterative Methods

Basic Definitions

Matrix Norm

The sequence of vectors {x(K)}3° | — x in R" with respect to
| - l|oo if and only if

(k) _

lim x;"/ = x;
k—o0

For each x € R"

foreach i =1,2,....n.

[1Xlloo < [1x[]2 < v/nl[x]|oo-

It can be shown that all norms on R" are equivalent.
g SDST
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Matrix Iterative Methods

Basic Definitions

Natural Matrix Norm

If|| - || is a vector norm on R", then

Al = max [[Ax]]
[|x||=1

is @ matrix norm.

This is the natural or induced matrix norm associated with the
vector norm.

Foranyz#0, x = Hz_ll is a unit vector
A
max ||Ax|| = max A(L>H = max [1Az]]
|xl=1 zlI70 12| lzll70 ||z]]
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We need to extend our definitions to include matrices.

Definition

A Matrix Norm on the set of all n x n matrices is a real-valued
function || - ||, defined on this set satisfying for all n x n matrices A
and B and all real numbers a.

(i) |14l > 0

ii) ||Al]| = 0 if and only if Ais O (all zero entries)

i) ||a@A|| = || ||A|| (scalar multiplication)

iv) [|[A+ BJ|| < ||A|| + ||B]| (triangle inequality)

v) [|1AB]| < 1Al 1]

NN SN

The distance between n X n matrices A and B with respect to this
matrix norm is ||A — B]|. SDSO
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Matrix Iterative Methods

Basic Definitions

Matrix Action

The natural norm describes how a matrix stretches unit vectors
relative to that norm. (Think eigenvalues!)

If A= {ajj} is an n x n matrix, then

n
|[Alloo = lrg;ag(nz; |ajj] (largest row sum)
J:
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Matrix Iterative Methods Matrix Iterative Methods

Basic Definitions Basic Definitions

Matrix Mapping Eigenvalues and Eigenvectors
Definition
o ) ) ) If A'is an n x n matrix, the characteristic polynomial of A is
An n X m matrix is a function that takes m-dimensional vectors defined by

into n-dimensional vectors.
p(\) = det(A — A/)

For square matrices A, we have A: R" — R".

Certain vectors are parallel to Ax, so Ax = Ax or (A— A)x=0.

Definition

If p is the characteristic polynomial of the matrix A, the zeroes of
p are eigenvalues (or characteristic values) of A. If X is an
eigenvalue of A and x # 0 satisfies (A — A/)x = 0, then x is an
eigenvector (or characteristic vector) of A corresponding to the

sosT eigenvalue \. Jrso

These values A, the eigenvalues, are significant for convergence of
iterative methods.
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Matrix Iterative Methods Matrix Iterative Methods

Basic Definitions Basic Definitions

Spectral Radius

Geometry of Eigenvalues and Eigenvectors

The spectral radius, p(A), provides a valuable measure of the
eigenvalues, which helps determine if a numerical scheme will
converge.

If x is an eigenvector associated with A, then Ax = \x, so the
matrix A takes the vector x into a scalar multiple of itself.

If XA is real and A > 1, then A has the effect of stretching x by a
factor of A. Definition
The spectral radius, p(A), of a matrix A is defined by

If Xis real and 0 < A\ < 1, then A has the effect of shrinking x by a
factor of . A = il

If A <0, the effects are similar, but the direction of Ax is reversed. where ) is an eigenvalue of A.

SDSO SDSO
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Matrix Iterative Methods

Matrix Iterative Methods
Basic Definitions Basic Definitions

Theorem for p(A) Interesting Result for p(A)

If A is an n X n matrix,

) 1/2
(i) |1Allo = (p(A*A))"/2. o _
(ii) p(A) < ||A|| for any natural norm || - ||. An interesting and useful result: For any matrix A and any
€ > 0, there exists a natural norm || - || with the property that

Proof of (ii): Let ||x|| be a unit eigenvector or A with respect to

the eigenvalue \ p(A) < ||A]| < p(A) + €.

A= M [x]] = |[2x]] = [|Ax]] < Al ]|x]] = ||A]]. So p(A) is the greatest lower bound for the natural norms on A.

Thus,
p(A) = max |A] < [|A|

If Ais symmetric, then p(A) = ||A]|2. SDSO SDS0
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Matrix Iterative Methods Matrix Iterative Methods
Basic Definitions Basic Definitions

Convergence of Matrix Convergence Theorem for Matrices

Definition
An n X n matrix A is convergent if
kILmOO(A )j =0, foreach i=1,..nandj=1,..n. The following statements are equivalent,
_ (i) A is a convergent matrix.
Example: Consider ) (ii) limp—o0 ||A"|| = O for some natural norm.
. 0 ' (iii) limp_—oc ||A"|| = O for all natural norms.
11 (iv) p(A) < 1.
i n —
It is easy to see that () iTs00 2125 S U fror ey v J
1
% 0
Ak = ( 2" > — 0.
ko1
2k oK SDSU SOS0
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Iterative Methods Iterative Methods
Example Example

Introduction — lterative Methods Basic |dea — Iterative Scheme

Gaussian elimination and other direct methods are best for small

dimensional systems. The iterative scheme starts with an initial guess, x(°) to the linear

system
Jacobi and Gauss-Seidel iterative methods were developed in late Ax=b

18th century to solve

Ax = b Transform this system into the form

by iteration. x=Tx+c

Iterative methods are more efficient for large sparse matrix The iterative scheme becomes

systems, both in computer storage and computation. . 1
x“=Tx""+c
Common examples include electric circuits, structural mechanics,

and partial differential equations.
SDSJ SOSJd
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Iterative Methods Iterative Methods
Example Example

[llustrative Example Illustrative Example

The previous system is easily converted to the form

Consider the following linear system Ax = b Xx=Tx~+c
10x — X+ 2x = 6 by solving for each x;.
—x1 + 1lxp — x3 + 3x4 = 25
2x1 — xx 4+ 10x3 — x4 = -—11 X1 = %XQ — %X3 + %
3x0 — x3 + 8x4 = 15
o = 4x + 43— gx o+ B
. . . . T
This has the unique solution x = (1,2, —-1,1)". X3 = —%X1 + %)Q I %
X4 = — %XQ + %X3 + %5

SDSO
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Iterative Methods Iterative Methods
Example Example

Illustrative Example Illustrative Example
The iterative scheme becomes
Thus, the system Ax = b becomes X = Lk Lk :
A= g + EdY gy 3
x=Tx+c Ao e oo - g
o - S -
with
) ) s With an initial guess of x = (0,0,0,0)”, we have
-0 L _1 g 7 -3 q
1 10 15 ; 255 O L0 10 v = 0.6000
T 11 0 11 —11 d 11 Xz(l) = ﬁxio) + 1—11)<3(0) — %X‘(lo) % = 2.2727
= 1 1 0 1 an C = 1 Xgl) _ —%xf’) 4 1710%;0) i 1710)40) _ % —  _1.1000
5 10 10 10 N _ %Xz(O) n %XQO) + B - 1.8750
o -3 1 0 15
L 3 3 . L § . . _ .
It takes 10 iterations to converge to a tolerance of 1073, Error is
. ||X(k)_x(l<—1)||oo
SDSU given by SDSU
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Jacobi Iteration Jacobi Iteration

Jacobi Iteration Jacobi lteration — Matrix Form
If Ais given by
The example above illustrates the Jacobi iterative method.
T | he [i a1 4di12 ... din
o solve the linear system a1 Ay ... aon
A=
Ax=b
anlt dn2 ... ann
Find x; (for ajj # 0) by iteratin . L.
i (for i #0) by & Split this into
n (k—1) an 0 ... 0 o ... 0 0 —ap ... a1,
k yry i . )
X,-( ) — Z - + — fori=1,...,n 0 am . o
=1 ajj aji _ _ _ - ' _ _ N _
oy ; o ; " " ; :  —ap_1n
J#i 0o ... 0 anm —am ...  —apn_1 O 0o ... ... o "
or
A=D—-L-U SDSO
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Jacobi Iteration

Jacobi lteration — Matrix Form

We are solving Ax =b with A= D — L — U from above.
It follows that:

Dx=(L+U)x+b

or
x=DYL+ Ux+D'b

The Jacobi iteration method becomes
x = Tix+¢;
where T; = D7}(L + U) and ¢; = D™ 'b.

SDSO
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Gauss-Seidel Iteration

Gauss-Seidel lteration

One possible improvement is that x(*=1) are used to compute xl-(k).

However, for i > 1, the values of xl(k), x,(f)l are already computed
and should be improved values.
If we use these updated values in the algorithm we obtain:

i—1 (k) n (k=1)
(k) ajjX; ajjX; b; .
X; :—E — E | +— fori=1,...,n
— aji = aji aji
j=1 Jj=i+1

This modification is called the Gauss-Seidel iterative method.
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Jacobi Iteration

Notes on Solving Ax =b

If any of the ajj = 0 and the matrix A is nonsingular, then the
equations can be reordered so that all a; # 0.

Convergence (if possible) is accelerated by taking the aj; as large
as possible.

SDSO
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Gauss-Seidel Iteration

Return to lllustrative Example

The Gauss-Seidel iterative scheme becomes

O 1,k L k=) 3
N L R
A bR - g
4 = S A L . op

With an initial guess of x = (0,0,0,0)7, it takes 5 iterations to
converge to a tolerance of 1073.
Again the error is given by

||x(k) _ X(k—1)||Oo

x|

SDSO
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Gauss-Seidel Iteration

Gauss-Seidel lteration — Matrix Form

With the same definitions as before, A= D — L — U, we can write
the equation Ax = b as

(D — L)x®) = Uxt—1) 4 p

The Gauss-Seidel iterative method becomes

xXK) = (D - ) tux*V 4+ (D-1)"'b
\—T,_/ ————
g Cg

or
x(K) = Tgx(k_l) +cg

The matrix D — L is nonsingular if and only if a;; # 0 for each

i=1 n. SDSO

— (37/51)
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Gauss-Seidel Iteration

Convergence Theorems

We want convergence criterion for the general iteration scheme of
the form

x(K) = Tx(k=1) 4 c, k

Lemma

If the spectral radius, p(T) satisfies p(T) < 1, then (I — T)~!
exists and

(I-T)y'=14+T+T?+.. =) T
j=0

The previous lemma is important in proving the main convergence

theorem. SDST
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Gauss-Seidel lteration

Convergence

Usually the Gauss-Seidel iterative method converges faster than
the Jacobi method.

Examples do exist where the Jacobi method converges and the
Gauss-Seidel method fails to converge.

Also, examples exist where the Gauss-Seidel method converges and
the Jacobi method fails to converge.

SDSO
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Gauss-Seidel Iteration

Convergence Theorems

Theorem
For any x(©) € R™, the sequence {x(K)}2° . defined by
xK = TxkDye k=12, ..

converges to the unique solution of

x=Tx+c

if and only if p(T) < 1.

The proof of the theorem helps establish error bounds from the

iterative methods. sDST
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Gauss-Seidel Iteration

Gauss-Seidel lteration

Convergence Theorems

Corollary

If || T|| <1 for any natural matrix norm and c is a given vector,
then the sequence {x(K)}2 = defined by

xK) = Tx(k=1) 4 ¢, k=12, ..

coverges for any x(© € R" to a vector x € R" and the following
error bounds hold:

(i) 11x = x| < | T][¥]Ix — x|

Al

i) e — x| < TIE
(i) Ihe =X < e

x® = %O

S0
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Gauss-Seidel Iteration

Convergence of Jacobi and Gauss-Seidel

The Jacobi method is given by:

where T; = D7}(L + U).
The Gauss-Seidel method is given by:

x(K) = Tgx(k_l) + Cg,
where T, = (D — L)7!U.
These iterative schemes converge if

AT <1 o p(Ty <L

SDSO
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Gauss-Seidel Iteration

More on Convergence of Jacobi and Gauss-Seidel

Definition

The n x n matrix A is said to be strictly diagonally dominant

when
n
|aii| > |aj
=i

[

holds for each i = 1,2, ...n.

L ( . . ) Matrix Algebra — (43/51)
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Rate of Convergence

If A is strictly diagonally dominant, then for any choice of x(©),
both the Jacobi and Gauss-Seidel methods give a sequence
{x(k)}22  that converge to the unique solution of

Ax = b.

The rapidity of convergence is seen from previous Corollary:

x5 = x| ~ p(T)*|x(¥ —x]|

SDSO
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Gauss-Seidel Iteration

Theorem for Some Matrices

Theorem (Stein-Rosenberg)

If ay < 0 for each i # k and aj; > 0 for each i = 1, ...n, then one
and only one of the following hold:

(a) 0 < p(Tg) < p(Tj) <1,

(b) 1 < p(T, )<p(T),

(c) p(T;) = p(Tg) =0,

(d) P(Tj) =p(Tg) = 1.

Part a implies that when one method converges, then both
converge with the Gauss-Seidel method converging faster.

Part b implies that when one method diverges, then both diverge
with the Gauss-Seidel divergence being more pronounced.

SDSO
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Gauss-Seidel Iteration

Gauss-Seidel lteration

Residuals

Definition

Suppose that X € R” is an approximation to the solution of the
linear system, Ax = b. The residual vector for X with respect to
this system is r = b — Ax.

We want residuals to converge as rapidly as possible to 0.

The Gauss-Seidel method chooses x,(-Jkr)1 so that the it" component
(k)

of r;.7 is zero.
Making one coordinate zero is often not the optimal way to reduce

(k)

the norm of the residual, riyy
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SOR Method

SOR Method

Modify Gauss-Seidel Iteration

The Gauss-Seidel method satisfies:

MONE S —-jijau MO 2{: acE Y

aji
ii j=it1

fori=1,...,n

which can be written:

(k) _ (k=) | i

X .
i i
aji

We modify this to
_ r
(K ey T
1 1 ..
all
where certain choices of w > 0 reduce the norm of the residual
vector and consequently improve the rate of convergence. SDSO
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The method from previous slide are called relaxation methods.
When 0 < w < 1, the procedures are called under-relaxation
methods and can be used to obtain convergence of systems that
fail to converge by the Gauss-Seidel method.

For choices of w > 1, the procedures are called over-relaxation
methods, abbreviated SOR for Successive Over-Relaxation

methods, which can accelerate convergence.
The SOR Method is given by:

x = (1- )“”+ 37 agx<Y

j=i+1

b_ZaU ()

SDSO
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SOR Method SOR Method

Matrix Form of SOR SOR Theorems

Rearranging the SOR Method:

ai) +w > ainJ-(k) = (1 - w)aix* T —w > ainJ-(k_l) + wb; Theorem (Kahan)
=t J=itl If ajj # 0 for each i =1,...,n, then p(T,) > |w —1|.

In vector form this is This implies that the SOR method can converge only if 0 < w < 2.

(D — wl)x®) = [(1 —w)D + wU]x*Y + b

Theorem (Ostrowski-Reich)

(K) . (k1) 4 If A is a positive definite matrix and 0 < w < 2, then the SOR
x' = (D —-wl)™[(1 -w)D +wlx +w(D—-wl)™b method converges for any choice of initial approximate vector, x(©)

or

Let T, = (D — wlL)™}[(1 —w)D +wU] and ¢, = w(D — wlL)™ b,

then
S0SO

— (50/51)

xK) = T x(k=1) 4 ¢ . SDSO
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SOR Method

SOR Theorems

If A is positive definite and tridiagonal, then p(Tz) = [p(T;)]?> < 1
and the optimal choice of w for the SOR method is

1-[o(TH*

with this choice of w, we have p(T,) = w — 1.
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