Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method	Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method
	Outline
Numerical Analysis and Computing Lecture Notes #16 — Matrix Algebra — Norms of Vectors and Matrices Eigenvalues and Eigenvectors Iterative Techniques	 Matrix Application - Truss Matrix Iterative Methods Basic Definitions Iterative Methods Example
Joe Mahaffy, <pre></pre>	 4 Jacobi Iteration 5 Gauss-Seidel Iteration 6 SOR Method
Joe Mahaffy, (mahaffy@math.sdsu.edu) Matrix Algebra	Joe Mahaffy, (mahaffy@math.sdsu.edu) Matrix Algebra
Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method Matrix Application - Truss	Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method Physics of Trusses
Trusses are lightweight structures capable of carrying heavy loads, e.g., roofs. $ \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_2} + \frac{1}{f_2} + \frac{1}{f_3} + \frac{1}{f_5} + \frac{1}{$	 The truss on the previous slide has the following properties: Fixed at Joint 1 Slides at Joint 4 Holds a mass of 10,000 N at Joint 3 All the Joints are pin joints The forces of tension are indicated on the diagram

Static Equilibrium

At each joint the forces must add to the zero vector.

Joint	Horizontal Force	Vertical Force
1	$-F_1 + \frac{\sqrt{2}}{2}f_1 + f_2 = 0$	$\frac{\sqrt{2}}{2}f_1 - F_2 = 0$
2	$-\frac{\sqrt{2}}{2}f_1 + \frac{\sqrt{3}}{2}f_4 = 0$	$-\frac{\sqrt{2}}{2}f_1 - f_3 - \frac{1}{2}f_4 = 0$
3	$-f_2 + f_5 = 0$	$f_3 - 10,000 = 0$
4	$-\frac{\sqrt{3}}{2}f_4 - f_5 = 0$	$\frac{1}{2}f_4 - F_3 = 0$

This creates an 8×8 linear system with 47 zero entries and 17 nonzero entries.

Sparse matrix – Solve by iterative methods

Earlier Iterative Schemes

Earlier we used iterative methods to find roots of equations

$$f(x) = 0$$

Basic Definitions

or fixed points of

$$x = g(x)$$

The latter requires |g'(x)| < 1 for convergence.

Want to extend to *n*-dimensional linear systems.

SDSU	SOSO
Joe Mahaffy, (mahaffy@math.sdsu.edu) Matrix Algebra — (5/51)	Joe Mahaffy, (mahaffy@math.sdsu.edu) Matrix Algebra — (6/51)
Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method	Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method
Basic Definitions	Common Norms
Definition A Vector norm on \mathbb{R}^n is a function $ \cdot $ mapping $\mathbb{R}^n \to \mathbb{R}$ with the following properties: (i) $ \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$ (ii) $ \mathbf{x} = 0$ if and only if $\mathbf{x} = 0$ (iii) $ \alpha \mathbf{x} = \alpha \mathbf{x} $ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$ (scalar multiplication) (iv) $ \mathbf{x} + \mathbf{y} \le \mathbf{x} + \mathbf{y} $ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (triangle inequality)	The l_1 norm is given by $ \mathbf{x} _1 = \sum_{i=1}^n x_i $ The l_2 norm or Euclidean norm is given by $ \mathbf{x} _2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$ The l_∞ norm or Max norm is given by $ \mathbf{x} _\infty = \max_{1 \le i \le n} x_i $ The Euclidean norm represents the usual notion of distance (Pythagorean theorem for distance).
Joe Mahaffy, (mahaffy@math.sdsu.edu) Matrix Algebra — (7/51)	Joe Mahaffy, (mahaffy@math.sdsu.edu) Matrix Algebra

Triangle Inequality

We need to show the triangle inequality for $|| \cdot ||_2$.

Theorem (Cauchy-Schwarz) For each $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ $\mathbf{x}^t \mathbf{y} = \sum_{i=1}^n x_i y_i \le \left(\sum_{i=1}^n x_i^2\right)^{1/2} \left(\sum_{i=1}^n y_i^2\right)^{1/2} = ||\mathbf{x}||_2 \cdot ||\mathbf{y}||_2$

Basic Definitions

Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method

Triangle Inequality - Proof

Cauchy-Schwarz.

This result gives for each $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

$$||\mathbf{x} + \mathbf{y}||^{2} = \sum_{i=1}^{n} (x_{i} + y_{i})^{2}$$

=
$$\sum_{i=1}^{n} x_{i}^{2} + 2 \sum_{i=1}^{n} x_{i}y_{i} + \sum_{i=1}^{n} y_{i}^{2}$$

$$\leq ||\mathbf{x}||^{2} + 2||\mathbf{x}||||\mathbf{y}|| + ||\mathbf{y}||^{2}$$

Basic Definitions

Taking the square root of the above gives the **Triangle Inequality**

	3030		-))30
Joe Mahaffy, <code>(mahaffy@math.sdsu.edu)</code>	Matrix Algebra — (9/51)	Joe Mahaffy ~ mahaffy@math.sdsu.edu	Matrix Algebra — (10/51)
Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method	Basic Definitions	Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method	Basic Definitions
Distance		Convergence	

Definition

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the l_2 and l_∞ distances between \mathbf{x} and \mathbf{y} is a function $|| \cdot ||$ mapping $\mathbb{R}^n \to \mathbb{R}$ with the following properties: are defined by

$$||\mathbf{x} - \mathbf{y}||_{2} = \left(\sum_{i=1}^{n} (x_{i} - y_{i})^{2}\right)^{1/2}$$

 $||\mathbf{x} - \mathbf{y}||_{\infty} = max_{1 \le i \le n} |x_{i} - y_{i}|$

Also, we need the concept of **convergence** in *n*-dimensions.

Definition

A sequence of vectors $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ in \mathbb{R}^n is said to **converge** to **x** with respect to norm $|| \cdot ||$ if given any $\epsilon > 0$ there exists an integer $N(\epsilon)$ such that

$$||\mathbf{x}^{(k)} - \mathbf{x}|| < \epsilon \quad \text{for all} \quad k \ge N(\epsilon).$$

SDSU

- (11/51)

Basic Definitions

Basic Theorems

Theorem

The sequence of vectors $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty} \to \mathbf{x}$ in \mathbb{R}^n with respect to $|| \cdot ||_{\infty}$ if and only if

$$\lim_{k \to \infty} x_i^{(k)} = x_i \quad \text{for each} \quad i = 1, 2, ..., n.$$

Theorem

For each $\mathbf{x} \in \mathbb{R}^n$

k

 $||\mathbf{x}||_{\infty} \leq ||\mathbf{x}||_{2} \leq \sqrt{n}||\mathbf{x}||_{\infty}.$

Matrix Algebra

Basic Definitions

It can be shown that all norms on \mathbb{R}^n are equivalent.

Jacobi Iteration Gauss-Seidel Iteration SOR Method

Matrix Application - Truss Matrix Iterative Methods Iterative Methods SDSU

SDSU

· (15/51)

Natural Matrix Norm

Theorem

If $|| \cdot ||$ is a vector norm on \mathbb{R}^n , then

Joe Mahaffy, (mahaffy@math.sdsu.edu)

$$||A|| = \max_{||x||=1} ||Ax|$$

is a matrix norm.

This is the **natural** or **induced matrix norm** associated with the vector norm.

For any $\mathbf{z} \neq \mathbf{0}$, $\mathbf{x} = \frac{\mathbf{z}}{||\mathbf{z}||}$ is a unit vector

$$\max_{||x||=1} ||Ax|| = \max_{||z||\neq 0} \left| \left| A\left(\frac{\mathbf{z}}{||\mathbf{z}||}\right) \right| \right| = \max_{||z||\neq 0} \frac{||A\mathbf{z}|}{||\mathbf{z}||}$$

Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method

Matrix Norm

We need to extend our definitions to include matrices.

Definition

A Matrix Norm on the set of all $n \times n$ matrices is a real-valued function $|| \cdot ||$, defined on this set satisfying for all $n \times n$ matrices A and B and all real numbers α . (i) $||A|| \ge 0$

Basic Definitions

(ii) ||A|| = 0 if and only if A is 0 (all zero entries) (iii) $||\alpha A|| = |\alpha| ||A||$ (scalar multiplication) (iv) $||A + B|| \le ||A|| + ||B||$ (triangle inequality) (v) $||AB|| \le ||A|| ||B||$

The distance between $n \times n$ matrices A and B with respect to this matrix norm is ||A - B||.

The natural norm describes how a matrix stretches unit vectors relative to that norm. (Think eigenvalues!)

Theorem

$$f A = \{a_{ij}\} \text{ is an } n \times n \text{ matrix, then}$$

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \qquad \text{(largest row sum)}$$

Joe Mahaffy, (mahaffy@math.sdsu.edu) Matrix Algebra

Matrix Mapping

An $n \times m$ matrix is a function that takes *m*-dimensional vectors into *n*-dimensional vectors.

Basic Definitions

For square matrices A, we have $A : \mathbb{R}^n \to \mathbb{R}^n$.

Certain vectors are parallel to $A\mathbf{x}$, so $A\mathbf{x} = \lambda \mathbf{x}$ or $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

These values λ , the **eigenvalues**, are significant for convergence of iterative methods.

Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method

Eigenvalues and Eigenvectors

Definition

If A is an $n \times n$ matrix, the characteristic polynomial of A is defined by

 $p(\lambda) = \det(A - \lambda I)$

Basic Definitions

Definition

If *p* is the characteristic polynomial of the matrix *A*, the zeroes of *p* are **eigenvalues** (or *characteristic values*) of *A*. If λ is an eigenvalue of *A* and $\mathbf{x} \neq \mathbf{0}$ satisfies $(A - \lambda I)\mathbf{x} = \mathbf{0}$, then **x** is an **eigenvector** (or *characteristic vector*) of *A* corresponding to the eigenvalue λ .

Joe Mahaffy, <pre>(mahaffy@math.sdsu.edu)</pre> Matrix Algebra	— (17/51)	Joe Mahaffy, (mahaf	$\texttt{fyQmath.sdsu.edu}\rangle$	Matrix Algebra	— (18/51)
Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method		Matrix Matri Ga	Application - Truss Iterative Methods Iterative Methods Jacobi Iteration auss-Seidel Iteration SOR Method	Basic Definitions	
Geometry of Eigenvalues and Eigenvectors		Spectral Radius			
If x is an eigenvector associated with λ , then A x = matrix A takes the vector x into a scalar multiple If λ is real and $\lambda > 1$, then A has the effect of structure factor of λ .	= $\lambda \mathbf{x}$, so the of itself. etching x by a	The spectral radius eigenvalues, which h converge. Definition	s, $ ho(A)$, providuelps determin	des a valuable measure of the le if a numerical scheme will	
If λ is real and $0<\lambda<1$, then A has the effect of factor of $\lambda.$	f shrinking x by a	The spectral radiu	s, $ ho(A)$, of a n $ ho(A)=rac{1}{2}$	matrix A is defined by max $ \lambda $,	
If $\lambda <$ 0, the effects are similar, but the direction of	of A x is reversed.	where λ is an eigenv	value of A.		
	SDSU				SDSU

— (19/51)

SDSU

250

Theorem for $\rho(A)$

Theorem

If A is an $n \times n$ matrix, (i) $||A||_2 = (\rho(A^t A))^{1/2}$. (ii) $\rho(A) \leq ||A||$ for any natural norm $||\cdot||$.

Proof of (ii): Let $||\mathbf{x}||$ be a unit eigenvector or A with respect to the eigenvalue λ

Basic Definitions

$$|\lambda| = |\lambda| \, ||\mathbf{x}|| = ||\lambda\mathbf{x}|| = ||A\mathbf{x}|| \le ||A|| \, ||\mathbf{x}|| = ||A||$$

Thus,

$$\rho(A) = \max |\lambda| \le ||A||.$$

Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method

Interesting Result for $\rho(A)$

An interesting and useful result: For any matrix A and any $\epsilon > 0$, there exists a natural norm $|| \cdot ||$ with the property that

$$\rho(A) \leq ||A|| < \rho(A) + \epsilon.$$

So $\rho(A)$ is the greatest lower bound for the natural norms on A.

If A is symmetric, then $ ho(A) = _A$	A ₂ . SDSU			SDSU
$\textbf{Joe Mahaffy}, \ \big< \texttt{mahaffy}\texttt{@math.sdsu.edu} \big>$	Matrix Algebra — (21/51)	Joe Mahaffy, $\langle \texttt{mahaffy@math.sdsu.edu} \rangle$	Matrix Algebra	— (22/51)
Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method	Basic Definitions	Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method	Basic Definitions	
Convergence of Matrix		Convergence Theorem for Matrices		
Definition An $n \times n$ matrix A is convergent $\lim_{k \to \infty} (A^k)_{ij} = 0$, for each Example: Consider $A = \begin{pmatrix} 1 \\ \frac{1}{2^k} \\ \frac{k}{2^{k+1}} \end{pmatrix}$	$ \begin{array}{l} \text{if} \\ i = 1, \dots, n \text{ and } j = 1, \dots, n. \\ \\ \frac{1}{2} 0 \\ \frac{1}{4} \frac{1}{2} \end{array} \right). \\ \\ \begin{array}{l} 0 \\ \frac{1}{2^{k}} \end{array} \right) \rightarrow 0. \end{array} $	The following statements are equ (i) A is a convergent matrix. (ii) $\lim_{n\to\infty} A^n = 0$ for some matrix (iii) $\lim_{n\to\infty} A^n = 0$ for all natrix (iv) $\rho(A) < 1$. (v) $\lim_{n\to\infty} A^n \mathbf{x} = 0$ for every \mathbf{x} .	uivalent, natural norm. sural norms.	SDSJ
Joe Mahaffy, (mahaffy@math.sdsu.edu)	Matrix Algebra — (23/51)	Joe Mahaffy, (mahaffy@math.sdsu.edu)	Matrix Algebra	— (24/51)

Introduction – Iterative Methods

Gaussian elimination and other direct methods are best for small dimensional systems.

Jacobi and Gauss-Seidel iterative methods were developed in late 18th century to solve

 $A\mathbf{x} = \mathbf{b}$

by iteration.

Iterative methods are more efficient for large sparse matrix systems, both in computer storage and computation.

Common examples include electric circuits, structural mechanics, and partial differential equations.

Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method

Basic Idea – Iterative Scheme

The iterative scheme starts with an initial guess, $\mathbf{x}^{(0)}$ to the linear system

 $A\mathbf{x} = \mathbf{b}$

Transform this system into the form

 $\mathbf{x} = T\mathbf{x} + \mathbf{c}$

The iterative scheme becomes

 $\mathbf{x}^k = T\mathbf{x}^{k-1} + \mathbf{c}$

		5050			2020
Joe Mahaffy, $\langle \texttt{mahaffy@math.sdsu.edu} \rangle$	Matrix Algebra	— (25/51)	$\textbf{Joe Mahaffy} \; \langle \texttt{mahaffy}\texttt{@math.sdsu.edu} \rangle$	Matrix Algebra	— (26/51)
Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method	Example		Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method	Example	
Illustrative Example		(1 of 4)	Illustrative Example		(2 of 4)
Consider the following linear syste	em $A\mathbf{x} = \mathbf{b}$		The previous system is easily con	nverted to the form $T\mathbf{x} + \mathbf{c}$	1

5050

· (27/51)

6

 $10x_1 - x_2 + 2x_3$

This has the unique solution $\mathbf{x} = (1, 2, -1, 1)^T$.

$$\mathbf{x} = T\mathbf{x} + \mathbf{c}$$

by solving for each x_i .

$$\begin{array}{rclrcrcrcrcrc} x_1 & = & & \frac{1}{10}x_2 & - & \frac{1}{5}x_3 & & + & \frac{3}{5} \\ x_2 & = & \frac{1}{11}x_1 & & + & \frac{1}{11}x_3 & - & \frac{3}{11}x_4 & + & \frac{25}{11} \\ x_3 & = & -\frac{1}{5}x_1 & + & \frac{1}{10}x_2 & & + & \frac{1}{10}x_4 & - & \frac{11}{10} \\ x_4 & = & - & \frac{3}{8}x_2 & + & \frac{1}{8}x_3 & & + & \frac{15}{8} \end{array}$$

Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method	Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method
Jacobi Iteration – Matrix Form (2 of 2)	Notes on Solving $A\mathbf{x} = \mathbf{b}$
We are solving $A\mathbf{x} = \mathbf{b}$ with $A = D - L - U$ from above. It follows that: $D\mathbf{x} = (L + U)\mathbf{x} + \mathbf{b}$ or $\mathbf{x} = D^{-1}(L + U)\mathbf{x} + D^{-1}\mathbf{b}$ The Jacobi iteration method becomes $\mathbf{x} = T_j\mathbf{x} + \mathbf{c}_j$ where $T_j = D^{-1}(L + U)$ and $\mathbf{c}_j = D^{-1}\mathbf{b}$.	If any of the $a_{ii} = 0$ and the matrix A is nonsingular, then the equations can be reordered so that all $a_{ii} \neq 0$. Convergence (if possible) is accelerated by taking the a_{ii} as large as possible.
SDSU	SDSU
Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method	Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method
Gauss-Seidel Iteration	Return to Illustrative Example
One possible improvement is that $\mathbf{x}^{(k-1)}$ are used to compute $x_i^{(k)}$. However, for $i > 1$, the values of $x_1^{(k)}, \dots x_{i-1}^{(k)}$ are already computed and should be improved values. If we use these updated values in the algorithm we obtain:	The Gauss-Seidel iterative scheme becomes $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$x_{i}^{(k)} = -\sum_{j=1}^{i-1} \left(\frac{a_{ij} x_{j}^{(k)}}{a_{ii}} \right) - \sum_{j=i+1}^{n} \left(\frac{a_{ij} x_{j}^{(k-1)}}{a_{ii}} \right) + \frac{b_{i}}{a_{ii}} \text{for } i = 1,, n$	With an initial guess of $\mathbf{x} = (0, 0, 0, 0)^T$, it takes 5 iterations to converge to a tolerance of 10^{-3} . Again the error is given by
This modification is called the Gauss-Seidel iterative method.	$\frac{ \mathbf{x}^{(k)} - \mathbf{x}^{(k)} _{\infty}}{ \mathbf{x}^{(k)} _{\infty}}$
SDSU	SD50
Joe Mahaffy, (mahaffy@math.sdsu.edu) Matrix Algebra	Joe Mahaffy, (mahaffy@math.sdsu.edu) Matrix Algebra

Gauss-Seidel Iteration – Matrix Form

With the same definitions as before, A = D - L - U, we can write the equation $A\mathbf{x} = \mathbf{b}$ as

$$(D-L)\mathbf{x}^{(k)} = U\mathbf{x}^{(k-1)} + \mathbf{b}$$

The Gauss-Seidel iterative method becomes

$$\mathbf{x}^{(k)} = \underbrace{(D-L)^{-1}U}_{T_g} \mathbf{x}^{(k-1)} + \underbrace{(D-L)^{-1}\mathbf{b}}_{\mathbf{c}_g}$$

or

$$\mathbf{x}^{(k)} = T_g \mathbf{x}^{(k-1)} + \mathbf{c}_g$$

The matrix D - L is nonsingular if and only if $a_{ii} \neq 0$ for each i = 1, ..., n.

Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration

Convergence

Usually the Gauss-Seidel iterative method converges faster than the Jacobi method.

Examples do exist where the Jacobi method converges and the Gauss-Seidel method fails to converge.

Also, examples exist where the Gauss-Seidel method converges and the Jacobi method fails to converge.

- (39/51)

SDSU

Convergence Theorems

(3 of 3)

Corollary

If ||T|| < 1 for any natural matrix norm and **c** is a given vector, then the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by

 $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}, \qquad k = 1, 2, \dots$

coverges for any $\mathbf{x}^{(0)} \in \mathbb{R}^n$ to a vector $\mathbf{x} \in \mathbb{R}^n$ and the following error bounds hold:

(i) $||\mathbf{x} - \mathbf{x}^{(k)}|| < ||T||^{k} ||\mathbf{x} - \mathbf{x}^{(0)}||$

(*ii*) $||\mathbf{x} - \mathbf{x}^{(k)}|| \le \frac{||\mathcal{T}||^k}{1 - ||\mathcal{T}||^k} ||\mathbf{x}^{(1)} - \mathbf{x}^{(0)}||$

More on Conve

Definition

Joe Ma

The $n \times n$ matrix A is said to be strictly diagonally dominant when

$$|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$$

holds for each i = 1, 2, ...n.

Convergence of Jacobi and Gauss-Seidel

Matrix Application - Truss

Matrix Iterative Methods

Iterative Methods

iss-Seidel Iteration

lacobi Iteration

The Jacobi method is given by:

$$\mathbf{x}^{(k)} = T_j \mathbf{x}^{(k-1)} + \mathbf{c}_j,$$

where $T_i = D^{-1}(L + U)$. The Gauss-Seidel method is given by:

$$\mathbf{x}^{(k)} = T_g \mathbf{x}^{(k-1)} + \mathbf{c}_g,$$

where $T_{g} = (D - L)^{-1} U$. These iterative schemes converge if

 $\rho(T_i) < 1$ or $\rho(T_g) < 1$.

haffy, $\langle \texttt{mahaffy@math.sdsu.edu} angle$	Matrix Algebra	— (41/51)	Joe Mahaffy, $\langle \texttt{mahaffy@math.sdsu.edu} \rangle$	Matrix Algebra	— (42/51)
Matrix Application - Truss			Matrix Application - Truss		
Matrix Iterative Methods			Matrix Iterative Methods		
Iterative Methods			Iterative Methods		
Jacobi Iteration			Jacobi Iteration		
Gauss-Seidel Iteration			Gauss-Seidel Iteration		
SOR Method			SOR Method		
rgence of Jacobi and	Gauss-Seidel		Rate of Convergence		

Theorem

If A is strictly diagonally dominant, then for any choice of $\mathbf{x}^{(0)}$, both the Jacobi and Gauss-Seidel methods give a sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ that converge to the unique solution of

 $A\mathbf{x} = \mathbf{b}.$

The rapidity of convergence is seen from previous Corollary:

 $||\mathbf{x}^{(k)} - \mathbf{x}|| \approx \rho(T)^k ||\mathbf{x}^{(0)} - \mathbf{x}||$

SDSU · (43/51)

Theorem for Some Matrices

Theorem (Stein-Rosenberg)

If $a_{ik} < 0$ for each $i \neq k$ and $a_{ii} > 0$ for each i = 1, ...n, then one and only one of the following hold: (a) $0 \leq \rho(T_g) < \rho(T_j) < 1$, (b) $1 < \rho(T_j) < \rho(T_g)$, (c) $\rho(T_j) = \rho(T_g) = 0$, (d) $\rho(T_j) = \rho(T_g) = 1$.

Part a implies that when one method converges, then both converge with the Gauss-Seidel method converging faster. Part b implies that when one method diverges, then both diverge with the Gauss-Seidel divergence being more pronounced.

Joe Mahaffy, (mahaffy@math.sdsu.edu) Matrix Algebra Matrix Application - Truss Matrix Iterative Methods Iterative Methods Jacobi Iteration Gauss-Seidel Iteration SOR Method

Modify Gauss-Seidel Iteration

The Gauss-Seidel method satisfies:

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right) \quad \text{for } i = 1, ..., n$$

which can be written:

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}}{a_{ii}}$$

We modify this to

$$x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_{ii}}{a_{ii}}$$

where certain choices of $\omega > 0$ reduce the norm of the residual vector and consequently improve the rate of convergence.

Definition

Suppose that $\tilde{\mathbf{x}} \in \mathbb{R}^n$ is an approximation to the solution of the linear system, $A\mathbf{x} = \mathbf{b}$. The **residual vector** for $\tilde{\mathbf{x}}$ with respect to this system is $\mathbf{r} = \mathbf{b} - A\tilde{\mathbf{x}}$.

Matrix Application - Truss

Matrix Iterative Methods

Iterative Methods Jacobi Iteration

SOR Method

Gauss-Seidel Iteration

We want residuals to converge as rapidly as possible to **0**. The Gauss-Seidel method chooses $\mathbf{x}_{i+1}^{(k)}$ so that the *i*th component of $\mathbf{r}_{i+1}^{(k)}$ is zero.

Making one coordinate zero is often not the optimal way to reduce the norm of the residual, $\mathbf{r}_{i+1}^{(k)}$.

I. edu) Matrix Algebra — (45/51) Joe Mahaffy (mahaffy@math.sdsu.edu) Matrix Algebra — (46/51) Truss ethods ethods eration retion Matrix Algebra — (46/51) Matrix Application - Truss Matrix Application - Truss Matrix Iterative Methods Iteration Gauss-Seidel Iteration SOR Method Matrix Algebra — (46/51)

The method from previous slide are called **relaxation methods**. When $0 < \omega < 1$, the procedures are called **under-relaxation methods** and can be used to obtain convergence of systems that fail to converge by the Gauss-Seidel method.

For choices of $\omega > 1$, the procedures are called **over-relaxation methods**, abbreviated **SOR** for **Successive Over-Relaxation** methods, which can accelerate convergence.

The SOR Method is given by:

SDSU

(47/51)

$$x_{i}^{(k)} = (1-\omega)x_{i}^{(k-1)} + \frac{\omega}{a_{ii}}\left(b_{i} - \sum_{j=1}^{i-1}a_{ij}x_{j}^{(k)} - \sum_{j=i+1}^{n}a_{ij}x_{j}^{(k-1)}\right)$$

Joe Mahaffy, (mahaffy@math.sdsu.edu) Matrix Algebra

Matrix Form of SOR

Rearranging the SOR Method:

$$a_{ii}x_i^{(k)} + \omega \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} = (1-\omega)a_{ii}x_i^{(k-1)} - \omega \sum_{j=i+1}^n a_{ij}x_j^{(k-1)} + \omega b_i$$

In vector form this is

$$(D-\omega L) \mathbf{x}^{(k)} = [(1-\omega)D+\omega U] \mathbf{x}^{(k-1)} + \omega \mathbf{k}$$

or

$$\mathbf{x}^{(k)} = (D - \omega L)^{-1} [(1 - \omega)D + \omega U] \mathbf{x}^{(k-1)} + \omega (D - \omega L)^{-1} \mathbf{b}$$

Let $T_{\omega} = (D - \omega L)^{-1} [(1 - \omega)D + \omega U]$ and $\mathbf{c}_{\omega} = \omega (D - \omega L)^{-1} \mathbf{b}$, then

$$\mathbf{x}^{(k)} = \mathcal{T}_{\omega} \mathbf{x}^{(k-1)} + \mathbf{c}_{\omega}.$$

Matrix Algebra

SDSU

— (49/51)

Matrix Application - Truss Matrix Iterative Methods **Iterative Methods** Jacobi Iteration Gauss-Seidel Iteration SOR Method

Joe Mahaffy, (mahaffy@math.sdsu.edu)

SOR Theorems

Theorem

If A is positive definite and tridiagonal, then $\rho(T_g) = [\rho(T_i)]^2 < 1$ and the optimal choice of ω for the SOR method is

$$\omega = \frac{2}{1+\sqrt{1-[\rho(T_j)]^2}}.$$

with this choice of ω , we have $\rho(T_{\omega}) = \omega - 1$.

Matrix Application - Truss Matrix Iterative Methods **Iterative Methods** Jacobi Iteration Gauss-Seidel Iteration SOR Method

SOR Theorems

Theorem (Kahan)

If $a_{ii} \neq 0$ for each i = 1, ..., n, then $\rho(T_{\omega}) \geq |\omega - 1|$. This implies that the SOR method can converge only if $0 < \omega < 2$.

Theorem (Ostrowski-Reich)

Joe Mahaffy, (mahaffy@math.sdsu.edu)

If A is a positive definite matrix and $0 < \omega < 2$, then the SOR method converges for any choice of initial approximate vector, $\mathbf{x}^{(0)}$

Matrix Algebra

(50/51)

SDSU

· (51/51)