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Fourier Series: First Observations

Trigonometric Polynomials: A Very Brief History

P(x) = Z ap cos(nx) + iz ap sin(nx)
n=0 n=0

For each positive integer n, the set of functions
{®g, ®1,...,P2p_1}, where

1750s Jean Le Rond d'Alembert used finite sums of sin and cos 1

to study vibrations of a string.

17xx  Use adopted by Leonhard Euler (leading mathematician at

the time).

17xx  Daniel Bernoulli advocates use of infinite (as above) sums

of sin and cos.

18xx  Jean Baptiste Joseph Fourier used these infinite series

to study heat flow. Developed theory.
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®o(x) = >
®u(x) = cos(kx), k=1,...,n

Spik(x) = sin(kx), k=1,...,n—1

is an Orthogonal set on the interval [—7, 7] with respect to the
weight function w(x) = 1.

SDSO SDSO
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Orthogonality

Orthogonality follows from the fact that integrals over [—m, 7] of
cos(kx) and sin(kx) are zero (except cos(0)), and products can be
rewritten as sums:

sinfysinfy = coslfn = 02) ; cos(01 + 62)
cosfycostr = cos(f1 — 62) 42— cos(fy + 65)
sinfjcosfr, = sin(61 —92)~2l-sm(01 _|_92).

Let 7, be the set of all linear combinations of the functions
{®g, P1,...,P2,-1}; this is the set of trigonometric
polynomials of degree < n.

— (5/22)
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The Fourier Series, S(x)

For f € C[—m, m], we seek the continuous least squares
approximation by functions in 7, of the form

n—1

Sn(x) = % + ap cos(nx) + Z (ak cos(kx) + by sin(kx)),
k=1

where, thanks to orthogonality

ay = 1 /7r f(x)cos(kx) dx, bk = 1 /TF f(x)sin(kx) dx.

—T —T

Definition (Fourier Series)

The limit
S(x) = lim Sp(x)

is called the Fourier Series of f.
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Example: Approximating f(x) = |x| on [—m, 7]

First we note that f(x) and cos(kx) are even functions on [—m, 7]
and sin(kx) are odd functions on [—7, 7]. Hence,

1 (7 2 (7
a = / |x\dx:/ xdx =T.
L p—— ™ Jo

1 /" 2 [T
/ |x| cos(kx) dx = / x cos( kx) dx
0 T Jo

dx =
2 sin(kx)|" 2 [T
= —XM / 1 -sin(kx) dx
™ k |y kmJo
— —
2’ 2
k
= m[cos(kﬂ)—cos(O)]:W[(—l) -1].
1 (7 .
by = / |x|sin(kx)  dx =0.
L —— N———

even X odd = odd.
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Example: Approximating f(x) = |x| on [—7, 7]

n
: ™2 1
We can write down S,(x) = > + = ( )2 cos(kx)
™
k=1
A T T T
L — ,
—a S0(X)
— S1(x)
3 — SBx)
> S5(x)
i —e S7(x) |
27 —
17 —
ol \ \
2 0 2 SDSO
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Introduction

The Discrete Fourier Transform Discrete Orthogonality of the Basis Functions

The Discrete Fourier Transform

The discrete Fourier transform, a.k.a. the finite Fourier transform,
is a transform on samples of a function.

It, and its “cousins,” are the most widely used mathematical
transforms; applications include:

@ Signal Processing

@ Image Processing
@ Audio Processing

@ Data compression
@ A tool for partial differential equations

@ etc...
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Orthogonality of the Basis Functions?

We know that the basis functions

1
q)O(X) = §
®r(x) = cos(kx), k=1,...,n
&, k(x) = sin(kx), k=1,...,n—1

are orthogonal with respect to integration over the interval.
The Big Question: Are they orthogonal in the discrete case? Is
the following true:

2m—1

37 0lg)Pi() = by 277
j=0
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Suppose we have 2m data points, (x;, f;), where
Xj = —7r+j—7r, and fj =f(x;), j=0,1,....2m—1.
m

The discrete least squares fit of a trigonometric polynomial
Sn(x) € 7, minimizes

SDSO
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Orthogonality of the Basis Functions! (A Lemma)...

Lemma

If the integer r is not a multiple of 2m, then

2m—-1 2m—1
Z cos(rx;) = Z sin(rx;) = 0.
j=0 Jj=0

Moreover, if r is not a multiple of m, then

2m—1 2m—1

Z [cos(m)]? = Z [sin(rx)]* = m.
j=0 j=0

SDSO
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Proof of Lemma

Introduction

The Discrete Fourier Transform Discrete Orthogonality of the Basis Functions

Proof of Lemma

Recalling long-forgotten (or quite possible never seen) facts from
Complex Analysis — Euler’s Formula:

'’ = cos() + isin(6).

Thus,
2m—1 2m—1 2m—1 om—1
Y cos(m) +i > sin(ng) = Y [cos(r) + isin(rg)] = Y e
j=0 j=0 j=0 =0
Since
o™i — e/r(f7T+j7r/m) — e*lrﬂ'ell“jﬂ'/m,
we get
2m—1 2m—1 2m—1
; [ i N\ pirm irjm/m
g cos(rx;) + i E sin(rxj) = e E e .
Jj=0 j=0 j=0
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Proof of Lemma

If r is not a multiple of m, then

2m—1 2m-1 2m—1
1 + cos(2rx;) 1
N2 ) _ :_
E [cos(rx;)]” = E 5 = E 5 =m
Jj=0 Jj=0 Jj=0

Similarly (use cos? § + sin?6 = 1)

2m—1

Z [sin(rx;)]* = m.
j=0

This proves the second part of the lemma.
We are now ready to show that the basis functions are orthogonal.
SDSJ
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Since Zfﬂ;l e™/m is a geometric series with first term 1, and
ratio e"™/™ £ 1, we get

2m—1 irm/my2m 2irm
1 —eirn/m 1 _ eirn/m’
Jj=0

This is zero since

1—e*™ =1—cos(2rr) —isin(2rr)=1—-1—7-0=0.

This shows the first part of the lemma:

2m—1 2m—1
Z cos(rxj) = Z sin(rx;) = 0.
j=0 Jj=0

SDSO
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Showing Orthogonality of the Basis Functions

Recall
( sinfysinf, = cos(f1 — 6-) ; cos(1 + 607)
cosfycoslfy = cos(t — f2) ‘2|' cos(b1 + 62)
\ sinfy cosfy — sin(61 —92)—2Fsin(91 —|—02).

Thus for any pair k # |

2m—1

D () Pi(x)

Jj=0

is a zero-sum of sin or cos, and when k =/, the sum is m.

SDSO
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Finally: The Trigonometric Least Squares Solution

Using

[1] Our standard framework for deriving the least squares solution
— set the partial derivatives with respect to all parameters
equal to zero.

Trigonometric Least Squares Solution

Expressions
Examples

Example: Discrete Least Squares Approximation

Let f(x) = x3 —2x?> + x +1/(x — 4) for x €
Let xj = —m + jn/5, j=0,1,...,9., ie

J X fi

[2] The orthogonality of the basis functions. 0 | -3.14159 | -54.02710

. .. ) . 1| -251327 | -31.17511

We find the coefficients in the summation > | -1.88495 | -15 85835

n—1 3 | -1.25663 -6.58954

90 . . 4 |-0.62831 | -1.88199
S,(x) = — + a, cos(nx) + ay cos(kx) + by sin(kx)) :

n(x) 5 Tan (nx) ;(k (kx) + by sin(kx)) . 0 oot

N 6 0.62831 -0.20978

o1 o1 7 1.25663 -0.28175

1 - 1%~ . 8 | 1.88495 | 1.00339

ak=— > ficos(ky), bi=— % fisin(ky). 9| 251327 | 5.08277
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Example: Discrete Least Squares Approximation

Example: Discrete Least Squares Approximation

We get the following coefficients:

ap = —20.837, a; =15.1322, ap = —-9.0819, a3 =7.9803 Notes:
b; =8.8661, by = —7.8193, b3 = 4.4910.

0 [1] The approximation get better as n — oo.
T T T

L — f(x)
+—a S1(x)
o—e S3(X)
+—+ 5(x)

[2] Since all the S,(x) are 2m-periodic, we will always have a
problem when f(—m) # f(m). [Fix: Periodic extension.] On
the following two slides we see the performance for a 27-
periodic f.

-20 . . ~
[3] It seems like we need O(m?) operations to compute @ and

b — m sums, with m additions and multiplications. There
is however a fast O(mlog,(m)) algorithm that finds these
coefficients. We will talk about this Fast Fourier Transform

next time.
-60

SDSO
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Trigonometric Least Squares Solution Erainil Trigonometric Least Squares Solution Bl
Example(2): Discrete Least Squares Approximation Example(2): Discrete Least Squares Approximation
We get the following coefficients:
Let f(x) = 2x* + cos(3x) + sin(2x), x € [, 7]. a = —8.2685, a; =2.2853, a, = —0.2064, a3 = 0.8729
Letxj:—7r—|—j7r/5,j:0,17...,9., ie. bi1=0, b=1, b3=0.
; 20 : T ‘ T ‘ T
J Xj fi B\
0 | -3.14159 | 18.7392 A 1
1| -251327 | 13.8932 e ;38 [
2 | -1.88495 8.5029
3| -1.25663 1.7615 r ]
4 | -0.62831 | -0.4705 10l _
5 0 1.0000
6 | 0.62831 1.4316 i |
7| 1.25663 2.9370 51 -
8 | 1.88495 7.3273
9 | 2.51327 | 11.9911 I |
ok _
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