Trigonometric Polynomial Approximation The Discrete Fourier Transform Trigonometric Least Squares Solution		Trigonometric Polynomial Approximation The Discrete Fourier Transform Trigonometric Least Squares Solution		
		Outline		
	Numerical Analysis and Computing Lecture Notes #14 — Approximation Theory — Trigonometric Polynomial Approximation	 Trigonometric Polynomial Approximation Introduction Fourier Series 		
	Joe Mahaffy, <pre></pre>	 The Discrete Fourier Transform Introduction Discrete Orthogonality of the Basis Functions Trigonometric Least Squares Solution Expressions Examples 		
	Spring 2010 Joe Mahaffy, (mahaffy@math.sdsu.edu) Trig. Polynomial Approx. — (1/22)	Joe Mahaffy (mahaffy@math.sdsu.edu) Trig. Polynomial Approx. — (2/22)		
	Trigonometric Polynomial Approximation The Discrete Fourier Transform Fourier Series	Trigonometric Polynomial Approximation The Discrete Fourier Transform Fourier Series		
Trigonome	tric Polynomials: A Very Brief History	Fourier Series: First Observations		
	$P(x) = \sum_{n=0}^{\infty} a_n \cos(nx) + i \sum_{n=0}^{\infty} a_n \sin(nx)$	For each positive integer <i>n</i> , the set of functions $\{\Phi_0, \Phi_1, \dots, \Phi_{2n-1}\}$, where		
1750s	Jean Le Rond d'Alembert used finite sums of sin and cos to study vibrations of a string.	$\begin{cases} \Phi_0(x) = \frac{1}{2} \\ \Phi_k(x) = \cos(kx), k = 1, \dots, n \\ \Phi_{n+k}(x) = \sin(kx), k = 1, \dots, n-1 \end{cases}$ is an Orthogonal set on the interval $[-\pi, \pi]$ with respect to the weight function $w(x) = 1$.		
17xx	Use adopted by Leonhard Euler (leading mathematician at the time).			
17xx	Daniel Bernoulli advocates use of infinite (as above) sums of sin and cos.			
18xx	Jean Baptiste Joseph Fourier used these infinite series to study heat flow. Developed theory.	SDSU		

— (3/22)

— (4/22)

Orthogonality

Orthogonality follows from the fact that integrals over $[-\pi, \pi]$ of $\cos(kx)$ and $\sin(kx)$ are zero (except $\cos(0)$), and products can be rewritten as sums:

$$\begin{aligned} \sin \theta_1 \sin \theta_2 &= \frac{\cos(\theta_1 - \theta_2) - \cos(\theta_1 + \theta_2)}{2} \\ \cos \theta_1 \cos \theta_2 &= \frac{\cos(\theta_1 - \theta_2) + \cos(\theta_1 + \theta_2)}{2} \\ \sin \theta_1 \cos \theta_2 &= \frac{\sin(\theta_1 - \theta_2) + \sin(\theta_1 + \theta_2)}{2}. \end{aligned}$$

Let \mathcal{T}_n be the set of all linear combinations of the functions $\{\Phi_0, \Phi_1, \dots, \Phi_{2n-1}\}$; this is the set of trigonometric **polynomials** of degree < n.

For $f \in C[-\pi, \pi]$, we seek the **continuous least squares**

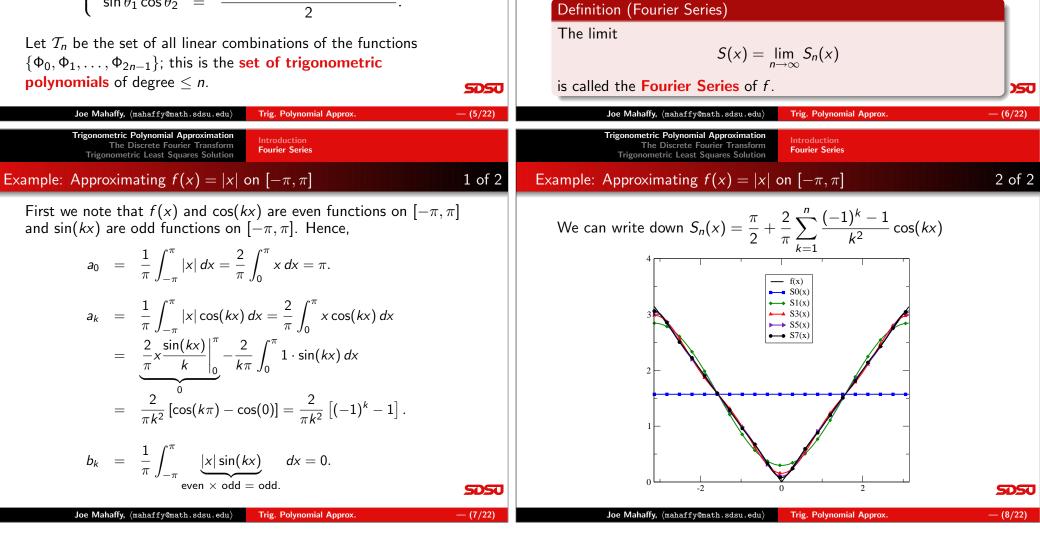
approximation by functions in \mathcal{T}_n of the form

$$S_n(x) = \frac{a_0}{2} + a_n \cos(nx) + \sum_{k=1}^{n-1} (a_k \cos(kx) + b_k \sin(kx)),$$

where, thanks to orthogonality

The Fourier Series, S(x)

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) \, dx, \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \, dx.$$



The Discrete Fourier Transform

Suppose we have 2m data points, (x_j, f_j) , where

$$x_j = -\pi + rac{j\pi}{m}$$
, and $f_j = f(x_j)$, $j = 0, 1, \dots, 2m - 1$.

The discrete least squares fit of a trigonometric polynomial $S_n(x) \in \mathcal{T}_n$ minimizes

$$E(S_n) = \sum_{j=0}^{2m-1} [S_n(x_j) - f_j]^2.$$

SDSU			SOS		
$\textbf{Joe Mahaffy}, \ \langle \texttt{mahaffy}\texttt{@math.sdsu.edu} \rangle$	Trig. Polynomial Approx.	— (9/22)	${\sf Joe}\;{\sf Mahaffy}\;$ (mahaffy@math.sdsu.edu)	Trig. Polynomial Approx.	— (10/22)
Trigonometric Polynomial Approximation			Trigonometric Polynomial Approximation		
The Discrete Fourier Transform The Discrete Fourier Transform Trigonometric Least Squares Solution	Introduction Discrete Orthogonality of the Basis Functions		The Discrete Fourier Transform	Introduction Discrete Orthogonality of the Basis Functions	
Orthogonality of the Basis Functions		Orthogonality of the Basis Eurotions	(A Lemma)		

We know that the basis functions

netric Polynomial Approximation

Trigonometric Least Squares Solution Discrete Of The Discrete Fourier Transform: Introduction

is a transform on samples of a function.

transforms; applications include:

Image ProcessingAudio Processing

• A tool for partial differential equations

• Signal Processing

• Data compression

• etc...

The Discrete Fourier Transform

Introduction

The discrete Fourier transform, a.k.a. the finite Fourier transform,

It, and its "cousins," are the most widely used mathematical

$$\begin{cases} \Phi_0(x) = \frac{1}{2} \\ \Phi_k(x) = \cos(kx), \quad k = 1, \dots, n \\ \Phi_{n+k}(x) = \sin(kx), \quad k = 1, \dots, n-1 \end{cases}$$

are orthogonal with respect to integration over the interval.

The Big Question: Are they orthogonal in the discrete case? Is the following true:

$$\sum_{j=0}^{2m-1} \Phi_k(x_j) \Phi_l(x_j) = \alpha_k \delta_{k,l} \quad ???$$

Lemma

If the integer r is not a multiple of 2m, then

$$\sum_{j=0}^{2m-1} \cos(rx_j) = \sum_{j=0}^{2m-1} \sin(rx_j) = 0.$$

Moreover, if r is not a multiple of m, then

$$\sum_{j=0}^{2m-1} [\cos(rx_j)]^2 = \sum_{j=0}^{2m-1} [\sin(rx_j)]^2 = m.$$

Joe Mahaffy, (mahaffy@math.sdsu.edu) Trig. Polynomial Approx.

5050

Proof of Lemma

1 of 3

5050

3 of 3

Since $\sum_{j=0}^{2m-1} e^{irj\pi/m}$ is a **geometric series** with first term 1, and ratio $e^{ir\pi/m} \neq 1$, we get

$$\sum_{j=0}^{2m-1} e^{irj\pi/m} = rac{1-(e^{ir\pi/m})^{2m}}{1-e^{ir\pi/m}} = rac{1-e^{2ir\pi}}{1-e^{ir\pi/m}}.$$

This is zero since

$$1 - e^{2ir\pi} = 1 - \cos(2r\pi) - i\sin(2r\pi) = 1 - 1 - i \cdot 0 = 0.$$

This shows the first part of the lemma:

$$\sum_{j=0}^{2m-1} \cos(rx_j) = \sum_{j=0}^{2m-1} \sin(rx_j) = 0.$$

Showing Orthogonality of the Basis Functions

Recall

$$\begin{aligned} \sin \theta_1 \sin \theta_2 &= \frac{\cos(\theta_1 - \theta_2) - \cos(\theta_1 + \theta_2)}{2} \\ \cos \theta_1 \cos \theta_2 &= \frac{\cos(\theta_1 - \theta_2) + \cos(\theta_1 + \theta_2)}{2} \\ \sin \theta_1 \cos \theta_2 &= \frac{\sin(\theta_1 - \theta_2) + \sin(\theta_1 + \theta_2)}{2}. \end{aligned}$$

Thus for any pair $k \neq l$

$$\sum_{j=0}^{2m-1} \Phi_k(x_j) \Phi_l(x_j)$$

is a zero-sum of sin or cos, and when k = l, the sum is m.

5050

2 of 3

Proof of Lemma

Recalling long-forgotten (or quite possible never seen) facts from **Complex Analysis** — **Euler's Formula**:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta).$$

Thus,

$$\sum_{j=0}^{2m-1} \cos(rx_j) + i \sum_{j=0}^{2m-1} \sin(rx_j) = \sum_{j=0}^{2m-1} [\cos(rx_j) + i \sin(rx_j)] = \sum_{j=0}^{2m-1} e^{irx_j}$$

Since

$$e^{irx_j} = e^{ir(-\pi+j\pi/m)} = e^{-ir\pi}e^{irj\pi/m},$$

we get

$$\sum_{j=0}^{2m-1} \cos(rx_j) + i \sum_{j=0}^{2m-1} \sin(rx_j) = e^{-ir\pi} \sum_{j=0}^{2m-1} e^{irj\pi/m}.$$

Joe Mahaffy, (mahaffy@math.sdsu.edu) Trig. Polynomial Approx.
Trigonometric Polynomial Approximation
The Discrete Fourier Transform
Trigonometric Least Squares Solution
Proof of Lemma

If r is not a multiple of m, then

$$\sum_{j=0}^{2m-1} [\cos(rx_j)]^2 = \sum_{j=0}^{2m-1} \frac{1 + \cos(2rx_j)}{2} = \sum_{j=0}^{2m-1} \frac{1}{2} = m.$$

Similarly (use $\cos^2 \theta + \sin^2 \theta = 1$)

$$\sum_{j=0}^{2m-1} [\sin(rx_j)]^2 = m.$$

This proves the second part of the lemma.

We are now ready to show that the basis functions are orthogonal.

SDSU

— (15/22)

Trigonometric Polynomial Approximation The Discrete Fourier Transform Trigonometric Least Squares Solution	Trigonometric Polynomial Approximation The Discrete Fourier Transform Trigonometric Least Squares Solution
Finally: The Trigonometric Least Squares Solution	Example: Discrete Least Squares Approximation 1 of 3
Using [1] Our standard framework for deriving the least squares solution — set the partial derivatives with respect to all parameters equal to zero. [2] The orthogonality of the basis functions. We find the coefficients in the summation $S_n(x) = \frac{a_0}{2} + a_n \cos(nx) + \sum_{k=1}^{n-1} (a_k \cos(kx) + b_k \sin(kx)) :$ $a_k = \frac{1}{m} \sum_{j=0}^{2m-1} f_j \cos(kx_j), b_k = \frac{1}{m} \sum_{j=0}^{2m-1} f_j \sin(kx_j).$	Let $f(x) = x^3 - 2x^2 + x + 1/(x - 4)$ for $x \in [-\pi, \pi]$. Let $x_j = -\pi + j\pi/5$, $j = 0, 1, \dots, 9$., <i>i.e</i> . $\frac{j}{0} \frac{x_j}{-3.14159} \frac{f_j}{-54.02710}$ $\frac{1}{1} \frac{-2.51327}{-2.51327} \frac{-31.17511}{-31.17511}$ $\frac{2}{2} \frac{-1.88495}{-15.85835} \frac{-15.85835}{-3} \frac{-5.58954}{-1.25663} \frac{4}{-0.62831} \frac{-0.20978}{-1.25663} \frac{-0.28175}{-0.28175}$ $\frac{8}{1} \frac{1.88495}{-1.00339} \frac{1.00339}{-9} \frac{9}{-2.51327} \frac{-5.08277}{-5.08277}$
Joe Mahaffy. (mahaffy@math.sdsu.edu) Trig. Polynomial Approx (17/22)	Joe Mahaffy, (mahaffy@math.sdsu.edu) Trig. Polynomial Approx
Trigonometric Polynomial Approximation The Discrete Fourier Transform Trigonometric Least Squares Solution	Trigonometric Polynomial Approximation The Discrete Fourier Transform Trigonometric Least Squares Solution
Example: Discrete Least Squares Approximation 2 of 3	Example: Discrete Least Squares Approximation3 of 3
We get the following coefficients: $a_0 = -20.837, a_1 = 15.1322, a_2 = -9.0819, a_3 = 7.9803$ $b_1 = 8.8661, b_2 = -7.8193, b_3 = 4.4910.$	 Notes: [1] The approximation get better as n → ∞. [2] Since all the S_n(x) are 2π-periodic, we will always have a problem when f(-π) ≠ f(π). [Fix: Periodic extension.] On the following two slides we see the performance for a 2π-periodic f. [3] It seems like we need O(m²) operations to compute ã and b̃ — m sums, with m additions and multiplications. There is however a fast O(mlog₂(m)) algorithm that finds these coefficients. We will talk about this Fast Fourier Transform next time.
	SDSU

