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Orthogonal Polynomials: A Quick Summary

So far we have seen the use of orthogonal polynomials can help us
solve the normal equations which arise in discrete and continuous
least squares problems, without the need for expensive and
numerically difficult matrix inversions.

The ideas and techniques we developed — i.e. Gram-Schmidt
orthogonalization with respect to a weight function over any
interval have applications far beyond least squares problems.

The Legendre Polynomials are orthogonal on the interval [−1, 1]
with respect to the weight function w(x) = 1. — One curious
property of the Legendre polynomials is that their roots (all real)
yield the optimal node placement for Gaussian quadrature.
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The Legendre Polynomials Background

The Legendre polynomials are solutions to the Legendre
Differential Equation (which arises in numerous problems
exhibiting spherical symmetry)

(1− x2)
d2y

dx2
− 2x

dy

dx
+ ℓ(ℓ + 1)y = 0, ℓ ∈ N

or equivalently

d

dx

[
(1− x2)

dy

dx

]
+ ℓ(ℓ + 1)y = 0, ℓ ∈ N

Applications: Celestial Mechanics (Legendre’s original applica-
tion), Electrodynamics, etc...
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Other Orthogonal Polynomials Background

“Orthogonal polynomials have very useful properties in the solution
of mathematical and physical problems. [... They] provide a
natural way to solve, expand, and interpret solutions to many types
of important differential equations. Orthogonal polynomials are
especially easy to generate using Gram-Schmidt
orthonormalization.”

“The roots of orthogonal polynomials possess many rather
surprising and useful properties.”

(http://mathworld.wolfram.com/OrthogonalPolynomials.html)
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The Laguerre Polynomials Background

The Laguerre polynomials are solutions to the Laguerre
differential equation

x
d2

dx2
+ (1− x)

dy

dx
+ λy = 0

They are associated with the radial solution to the Schrödinger
equation for the Hydrogen atom’s electron (Spherical Harmonics).
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More Orthogonal Polynomials Background

Polynomials Interval w(x)

Chebyshev (1st) [−1, 1] 1/
√

1− x2

Chebyshev (2nd) [−1, 1]
√

1− x2

Gegenbauer [−1, 1] (1− x2)α−1/2

Hermite∗ (−∞,∞) e−x2

Jacobi (−1, 1) (1− x)α(1 + x)β

Legendre [−1, 1] 1
Laguerre [0,∞) e−x

Laguerre (assoc) [0,∞) xke−x

Today we’ll take a closer look at Chebyshev polynomials of the first
kind.

∗ These are the Hermite orthogonal polynomials, not to be confused
with the Hermite interpolating polynomials...
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Chebyshev Polynomials: The Sales Pitch.

Tn(z) =
1

2πi

∮ (
1− t2

)
t−(n+1)

(1− 2tz + t2)
dt

Chebyshev Polynomials are used to minimize approximation
error. We will use them to solve the following problems:

[1] Find an optimal placement of the interpolating points
{x0, x1, . . . , xn} to minimize the error in Lagrange interpola-
tion.

[2] Find a means of reducing the degree of an approximating poly-
nomial with minimal loss of accuracy.
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Chebyshev Polynomials: Definitions.

The Chebyshev polynomials {Tn(x)} are orthogonal on the interval

(−1, 1) with respect to the weight function w(x) = 1/
√

1− x2, i.e.

〈Ti (x), Tj(x)〉w(x) ≡
∫ 1

−1

Ti (x)Tj (x)∗ w(x)dx = αiδi,j .

We could use the Gram-Schmidt orthogonalization process to find
them, but it is easier to give the definition and then check the
properties...

Definition (Chebyshev Polynomials)

For x ∈ [−1, 1], define

Tn(x) = cos(n arccos x), ∀n ≥ 0.

Note: T0(x) = cos(0) = 1, T1(x) = x .
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Chebyshev Polynomials, Tn(x), n ≥ 2.

We introduce the notation θ = arccos x , and get

Tn(θ(x)) ≡ Tn(θ) = cos(nθ), where θ ∈ [0, π].

We can find a recurrence relation, using these observations:

Tn+1(θ) = cos((n + 1)θ) = cos(nθ) cos(θ)− sin(nθ) sin(θ)
Tn−1(θ) = cos((n − 1)θ) = cos(nθ) cos(θ) + sin(nθ) sin(θ)
Tn+1(θ) + Tn−1(θ) = 2 cos(nθ) cos(θ).

Returning to the original variable x , we have

Tn+1(x) = 2x cos(n arccos x)− Tn−1(x),

or
Tn+1(x) = 2xTn(x)− Tn−1(x).
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The Chebyshev Polynomials
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Orthogonality of the Chebyshev Polynomials, I

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =

∫ 1

−1
cos(n arccos x) cos(m arccos x)

dx√
1− x2

.

Reintroducing θ = arccos x gives,

dθ = − dx√
1− x2

,

and the integral becomes

−
∫ 0

π
cos(nθ) cos(mθ) dθ =

∫ π

0
cos(nθ) cos(mθ) dθ.

Now, we use the fact that

cos(nθ) cos(mθ) =
cos(n + m)θ + cos(n −m)θ

2
. . .
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Orthogonality of the Chebyshev Polynomials, II

We have: ∫ π

0

cos(n + m)θ + cos(n −m)θ

2
dθ.

If m 6= n, we get[
1

2(n + m)
sin((n + m)θ) +

1

2(n −m)
sin((n −m)θ)

]π

0

= 0,

if m = n, we have[
1

2(n + m)
sin((n + m)θ) +

x

2

]π

0

=
π

2
.

Hence, the Chebyshev polynomials are orthogonal.
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Zeros and Extrema of Chebyshev Polynomials.

Theorem

The Chebyshev polynomial of degree n ≥ 1 has n simple zeros in
[−1, 1] at

xk = cos

(
2k − 1

2n
π

)
, k = 1, . . . , n.

Moreover, Tn(x) assumes its absolute extrema at

x ′k = cos

(
kπ

n

)
, with Tn(x

′
k) = (−1)k , k = 1, . . . , n − 1.

Payoff: No matter what the degree of the polynomial, the oscilla-
tions are kept under control!!!
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Zeros and Extrema of Chebyshev Polynomials — Proof.

Proof.

Let:
xk = cos

„
2k − 1

2n
π

«
, x ′k = cos

„
kπ

n

«
.

Then:

Tn(xk ) = cos(n arccos(xk)) = cos
“
n arccos

“
cos

“
2k−1

2n
π

”””
= cos

“
2k−1

2
π

”
= 0,

√

T ′
n(x) =

d

dx
[cos(n arccos(x))] =

n sin(n arccos(x))√
1− x2

,

T ′
n(x

′
k) =

n sin(n arccos(cos( kπ
n )))q

1−cos2( kπ
n )

= n sin(kπ)

sin( kπ
n )

= 0,
√

Tn(x ′k ) = cos
“
n arccos

“
cos

“
kπ
n

”””
= cos(kπ) = (−1)k .

√
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Monic Chebyshev Polynomials, I

Definition (Monic Polynomial)

A monic polynomial is a polynomial with leading coefficient 1.

We get the monic Chebyshev polynomials T̃n(x) by dividing Tn(x)
by 2n−1, n ≥ 1. Hence,

T̃0(x) = 1, T̃n(x) =
1

2n−1
Tn(x), n ≥ 1.

They satisfy the following recurrence relations

T̃2(x) = xT̃1(x)− 1
2 T̃0(x)

T̃n+1(x) = xT̃n(x)− 1
4 T̃n−1(x).
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Monic Chebyshev Polynomials, II

The location of the zeros and extrema of T̃n(x) coincides with
those of Tn(x), however the extreme values are

T̃n(x
′
k) =

(−1)k

2n−1
, k = 1, . . . , n − 1.

Definition

Let P̃n denote the set of all monic polynomials of degree n.

Theorem (Min-Max)

The monic Chebyshev polynomials T̃n(x), have the property that

1

2n−1
= max

x∈[−1,1]
|T̃n(x)| ≤ max

x∈[−1,1]
|Pn(x)|, ∀Pn(x) ∈ P̃n.

Moreover, equality can only occur if Pn(x) ≡ T̃n(x).
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The Monic Chebyshev Polynomials
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Optimal Node Placement in Lagrange Interpolation, I

If x0, x1, . . . , xn are distinct points in the interval [−1, 1] and
f ∈ Cn+1[−1, 1], and P(x) the nth degree interpolating Lagrange
polynomial, then ∀x ∈ [−1, 1] ∃ξ(x) ∈ (−1, 1) so that

f (x)− P(x) =
f (n+1)(ξ(x))

(n + 1)!

n∏
k=0

(x − xk).

We have no control over f (n+1)(ξ(x)), but we can place the nodes
in a clever way as to minimize the maximum of

∏n
k=0(x − xk).

Since
∏n

k=0(x − xk) is a monic polynomial of degree (n + 1), we
know the min-max is obtained when the nodes are chosen so that

n∏
k=0

(x − xk) = T̃n+1(x), i.e. xk = cos

(
2k + 1

2(n + 1)
π

)
.
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Optimal Node Placement in Lagrange Interpolation, II

Theorem

If P(x) is the interpolating polynomial of degree at most n with
nodes at the roots of Tn+1(x), then

max
x∈[−1,1]

|f (x)− P(x)| ≤ 1

2n(n + 1)!
max

x∈[−1,1]
|f (n+1)(x)|,

∀f ∈ Cn+1[−1, 1].

Extending to any interval: The transformation

x̃ =
1

2
[(b − a)x + (a + b)]

transforms the nodes xk in [−1, 1] into the corresponding nodes x̃k

in [a, b].

Joe Mahaffy, 〈mahaffy@math.sdsu.edu〉 Chebyshev Polynomials & Least Squares, redux — (20/45)



Chebyshev Polynomials
Least Squares, redux

Orthogonal Polynomials
Chebyshev Polynomials, Intro & Definitions
Properties

Example: Interpolating f (x) = x2 ex .
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Example: Interpolating f (x) = x2 ex — The Error.
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Example: Interpolating f (x) = x2 ex — The Error.
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Least Squares: Revisited Introduction

Before we move on to new and exciting orthogonal polynomials
with exotic names... Let’s take a moment (or two) and look at the
usage of Least Squares Approximation.

This section is a “how-to” with quite a few applied example of
least squares approximation...
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Example #1 — Warm-up 1 of 3

First we consider the problem of fitting 1st, 2nd, and 3rd degree
polynomials to the following data:

x = [1.0 1.1 1.3 1.5 1.9 2.1]’

y = [1.84 1.90 2.31 2.65 2.74 3.18]’

matlab¿¿ [First we define the matrices]

A1 = [ones(size(x)) x];

A2 = [A1 x.*x];

A3 = [A2 x.*x.*x ];

[Then we solve the Normal Equations]

pcoef1 = A1\y;
pcoef2 = A2\y;
pcoef3 = A3\y;

Note: The matrices A1, A2, and A3 are “tall and skinny.” Normally we
would compute (An′ · An)−1(An′ · y), however when matlab encounters
An\y it automatically gives us a solution in the least squares sense.
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Example #1 — Warm-up 2 of 3

We now have the coefficients for the polynomials, let’s plot:
matlab>> xv = 1.0:0.01:2.1;

p1 = polyval(flipud(pcoef1),xv);

p2 = polyval(flipud(pcoef2),xv);

p3 = polyval(flipud(pcoef3),xv);

plot(xv,p3,’k-’,’linewidth’,3); hold on;

plot(x,y,’ko’,’linewidth’,3); hold off
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Figure: The least squares polynomials p1(x), p2(x), and p3(x).
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Example #1 — Warm-up 3 of 3

Finally, we compute the error
matlab>> p1err = polyval(flipud(pcoef1),x) - y;

p2err = polyval(flipud(pcoef2),x) - y;

p3err = polyval(flipud(pcoef3),x) - y;

disp([sum(p1err.*p1err) sum(p2err.*p2err)

sum(p3err.*p3err)])

Which gives us the fitting errors

PErr
1 = 0.0877, PErr

2 = 0.0699, PErr
3 = 0.0447
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Example #2 — Something More Exotic 1 of 2

Consider the same data:
x = [1.0 1.1 1.3 1.5 1.9 2.1]’

y = [1.84 1.90 2.31 2.65 2.74 3.18]’

But let’s find the best fit of the form a + b
√

x to this data! Notice
that this expression is linear in its parameters a, b, so we can solve
the corresponding least squares problem!

matlab>> A = [ones(size(x)) sqrt(x)];

pcoef = A\y;
xv = 1.0:0.01:2.1;

fv = pcoef(1) + pcoef(2)*sqrt(xv);

plot(xv,fv,’k-’,’linewidth’,3); hold on;

plot(x,y,’ko’,’linewidth’,3); hold off;
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Example #2 — Something More Exotic 2 of 2
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Figure: The best fit of the form a + b
√

x .

We compute the fitting error:
matlab>> ferr = pcoef(1) + pcoef(2)*sqrt(x) - y;

disp(sum(ferr.*ferr))

Which gives us PErr
{a+b

√
x} = 0.0749
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Getting Even More Exotic? 1 of 2

As long as the model is linear in its parameters, we can solve the
least squares problem.

Non-linear dependence will have to wait until Math 693a.

We can fit this model:

M1(a, b, c , d) = a + bx3/2 + c/
√

x + desin(x)

Just define the matrix

matlab>> A = [ones(size(x)) x.∧(3/2) 1./sqrt(x) exp(sin(x))];

and compute the coefficients

matlab>> coef = A\y;

etc...
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Getting Even More Exotic? 2 of 2
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The optimal approximation of this form is

16.4133− 0.9970x3/2 − 11.0059√
x

− 1.1332esin(x)
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Getting Multi-Dimensional

It seems quite unlikely the model

M1(a, b, c , d) = a + bx3/2 + c/
√

x + desin(x)

will ever be useful.

However, we have forgotten about one important aspect of the
problem — so far our models have depended on only one variable,
x .

How do we go about fitting multi-dimensional data?
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Examples
More than one variable? — No problem!

Example: Going 2D 1 of 10

matlab>> x=1:0.25:5;
y=1:0.25:5;
[X,Y]=meshgrid(x,y);
Fxy=1+sqrt(X)+Y.∧3+0.05*randn(size(X));
surf(x,y,Fxy)
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Figure: 2D-data set, the vertexes on the surface are our data points.
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Examples
More than one variable? — No problem!

Example: Going 2D 2 of 10

Lets try to fit a simple 3-parameter model to this data

M(a, b, c) = a + bx + cy

matlab>> sz = size(X);

Bm = reshape(X,prod(sz),1);

Cm = reshape(Y,prod(sz),1);

Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm];

coef = A \ RHS;

fit = coef(1) + coef(2)*X + coef(3)*Y;

fitError = Fxy - fit;

surf(x,y,fitError)
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Examples
More than one variable? — No problem!

Example: Going 2D 3 of 10
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Figure: The optimal model fit, and the fitting error for the
least squares best-fit in the model space M(a, b, c) = a +
bx + cy . Here, the total LSQ-error is 42,282.
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Examples
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Example: Going 2D 4 of 10

Lets try to fit a simple 4-parameter (bi-linear) model to this data

M(a, b, c) = a + bx + cy + dxy

matlab>> sz = size(X);

Bm = reshape(X,prod(sz),1);

Cm = reshape(Y,prod(sz),1);

Dm = reshape(X.*Y,prod(sz),1);

Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm Dm];

coef = A \ RHS;

fit = coef(1) + coef(2)*X + coef(3)*Y + coef(4)*X.*Y;

fitError = Fxy - fit;

surf(x,y,fitError)
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Examples
More than one variable? — No problem!

Example: Going 2D 5 of 10
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Figure: The fitting error for the least squares best-fit in the
model space M(a, b, c) = a+bx + cy +dxy . — Still a pretty
bad fit. Here, the total LSQ-error is still 42,282.
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Example: Going 2D 6 of 10

Since the main problem is in the y -direction, we fit try a
4-parameter model with a quadratic term in y

M(a, b, c) = a + bx + cy + dy2

matlab>> sz = size(X);

Bm = reshape(X,prod(sz),1);

Cm = reshape(Y,prod(sz),1);

Dm = reshape(Y.*Y,prod(sz),1);

Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm Dm];

coef = A \ RHS;

fit = coef(1) + coef(2)*X + coef(3)*Y + coef(4)*Y.*Y;

fitError = Fxy - fit;

surf(x,y,fitError)
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Example: Going 2D 7 of 10
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Figure: The fitting error for the least squares best-fit in the
model space M(a, b, c) = a + bx + cy + dy2. — We see a
significant drop in the error (one order of magnitude); and
the total LSQ-error has dropped to 578.8.
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More than one variable? — No problem!

Example: Going 2D 71
2 of 10

We notice something interesting: the addition of the xy -term to
the model did not produce a drop in the LSQ-error. However, the
y2 allowed us to capture a lot more of the action.

The change in the LSQ-error as a function of an added term is one
way to decide what is a useful addition to the model.

Why not add both the xy and y2 always?

xy y2 Both
κ(A) 86.2 107.3 170.5
κ(ATA) 7,422 11,515 29,066

Table: Condition numbers for the A-matrices (and
associated Normal Equations) for the different models.
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Examples
More than one variable? — No problem!

Example: Going 2D 8 of 10

We fit a 5-parameter model with a quadratic term in y

M(a, b, c) = a + bx + cy + dy2 + ey3

matlab>> sz = size(X);

Bm = reshape(X,prod(sz),1);

Cm = reshape(Y,prod(sz),1);

Dm = reshape(Y.*Y,prod(sz),1);

Em = reshape(Y.*Y.*Y,prod(sz),1);

Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm Dm Em];

coef = A \ RHS;

fit = coef(1) + coef(2)*X + coef(3)*Y + coef(4)*Y.*Y +

coef(5)*Y.∧3;
fitError = Fxy - fit;

surf(x,y,fitError)
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More than one variable? — No problem!

Example: Going 2D 9 of 10

1
2

3
4

5

0

2

4

6
0

50

100

150

Fit (Model 4)

1
2

3
4

5

0

2

4

6
−0.2

−0.1

0

0.1

0.2

Error (Model 4)

Figure: The fitting error for the least squares best-fit in the
model space M(a, b, c) = a + bx + cy + dy2 + ey3. — We
now have a pretty good fit. The LSQ-error is now down to
0.9864.
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Examples
More than one variable? — No problem!

Example: Going 2D 10 of 10

Model LSQ-error κ(ATA)

a + bx + cy 42,282 278
a + bx + cy + dxy 42,282 7,422
a + bx + cy + dy2 578.8 11,515
a + bx + cy + ey3 2.695 107,204
a + bx + cy + dy2 + ey3 0.9864 1,873,124

Table: Summary of LSQ-error and conditioning of the Normal
Equations for the various models. We notice that additional
columns in the A-matrix (additional model parameters) have a
severe effect on the conditioning of the Normal Equations.
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Examples
More than one variable? — No problem!

Moving to Even Higher Dimensions

At this point we can state the Linear Least Squares fitting problem
in any number of dimensions, and we can use exotic models if we
want to.

In 3D we need 10 parameters to fit a model with all linear, and
second order terms

M(a, b, c , d , e, f , g , h, i , j) =
a + bx + cy + dz + ex2 + fy2 + gz2 + hxy + ixz + jyz

With nx , ny , and nz data points in the x-, y -, and z-directions
(respectively) we end up with a matrix A of dimension
(nx · ny · nz)× 10.
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More than one variable? — No problem!

Ill-conditioning of the Normal Equations

Needless(?) to say, the normal equations can be quite
ill-conditioned in this case. The ill-conditioning can be eased by
searching for a set of orthogonal functions with respect to the
inner product

〈f (x), g(x)〉 =

∫ xb

xa

∫ yb

ya

∫ zb

za

f (x , y , z)g(x , y , z)∗ dx dy dz

That’s *sometimes* possible, but we’ll leave the details as an
exercise for a dark and stormy night...
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