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Properties Properties
Orthogonal Polynomials: A Quick Summary The Legendre Polynomials Background
So far we have seen the use of orthogonal polynomials can help us The Lege_ndre ponnomiaI§ are §°|“t_i°”5 to the Legendre
solve the normal equations which arise in discrete and continuous D|ff.er_e_nt|al Equ?tlon (which arises in numerous problems
least squares problems, without the need for expensive and exhibiting spherical symmetry)
numerically difficult matrix inversions. 5
2\ d%y dy

(1-x)o5 —2x-+{l+1)y=0, (€N
The ideas and techniques we developed — i.e. Gram-Schmidt dx dx
orthogonalization with respect to a weight function over any or equivalently
interval have applications far beyond least squares problems.

d o\ dy

The Legendre Polynomials are orthogonal on the interval [-1,1] dx {(1 X )E] HiE+1)y =0 (eN

with respect to the weight function w(x) = 1. — One curious
property of the Legendre polynomials is that their roots (all real)

_ i _ Applications: Celestial Mechanics (Legendre's original applica-
yield the optimal node placement for Gaussian quadrature.

tion), Electrodynamics, etc...
SOSJO
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Chebyshev Polynomials

Other Orthogonal Polynomials Background The Laguerre Polynomials Background

L,(x)
“Orthogonal polynomials have very useful properties in the solution =
of mathematical and physical problems. [... They] provide a ™ol
natural way to solve, expand, and interpret solutions to many types | - N L&
of important differential equations. Orthogonal polynomials are A e P ¥
especially easy to generate using Gram-Schmidt 4 T il((:;

orthonormalization.”
The Laguerre polynomials are solutions to the Laguerre

The roots of orthogonal polynomials possess many rather differential equation

surprising and useful properties.”
d? dy

(http ://mathworld.wolfram.com/OrthogonalPolynomials. html) XW + (1 - X) dx

They are associated with the radial solution to the Schrodinger
SDSO equation for the Hydrogen atom's electron (Spherical Harmonics). SDSO

+Ay =0
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Properties Properties
More Orthogonal Polynomials Background Chebyshev Polynomials: The Sales Pitch.
Polynomials Interval | w(x)
Chebyshev((ls;) {—1,1]] 1/V1 —2x2 o 1 [ (1- ) ~
Chebyshev (2nd -1,1 Vv1—x Th(z) = —]{ > dt @»»»’m
Gegenbauer [—1,1] (1 —x?)e-1/2 2mi (1 -2tz + t2) ’
Hermite* (—00, 00) e
Jacobi (-1,1) (1 —x)*(L+x)?
Legendre [-1,1] 1 ) L. . .
Laguerre [0, 0) o x Chebyshev Polynomials are used to minimize approximation
Laguerre (assoc) | [0, 0) xke—x error. We will use them to solve the following problems:
Today we'll take a closer look at Chebyshev polynomials of the first [1] Find an optimal placement of the interpolating points
kind. {x0,X1,...,Xn} to minimize the error in Lagrange interpola-
tion.
These are the Her@te ortho.gonal polync?m|a|s, not to be confused [2] Find a means of reducing the degree of an approximating poly-
with the Hermite interpolating polynomials... . . ..
SDSO nomial with minimal loss of accuracy. SDST
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Chebyshev Polynomials: Definitions. Chebyshev Polynomials, T,(x), n > 2.

The Chebyshev polynomials { T,(x)} are orthogonal on the interval We introduce the notation 6 = arccos x, and get
(—1,1) with respect to the weight function w(x) = 1/v1 — x?, i.e.
1 Th(0(x)) = T,(0) = cos(nf), where 6 € [0, 7].

(00 TiNut = | TATH0" wlx)ebe = it

We can find a recurrence relation, using these observations:

We could use the Gram-Schmidt orthogonalization process to find Tri1(0) = cos((n + 1)8) = cos(nB) cos(8) — sin(nh) sin(H)
them, but it is easier to give the definition and then check the To-1(0) = cos((n — 1)0) = cos(nf) cos(#) + sin(nd) sin(6)
properties... Tni1(0) + Tu_1(0) = 2 cos(nh) cos(h).

Definition (Chebyshev Polynomials)

Returning to the original variable x, we have
For x € [-1, 1], define
Th+1(x) = 2x cos(narccos x) — Tp_1(x),
Th(x) = cos(narccosx), Vn>0.

Note: To(x) =cos(0) =1, Ti(x)=x. SDSU Thi1(x) = 2xTn(x) — Ta-1(x). SDST
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The Chebyshev Polynomials

Orthogonality of the Chebyshev Polynomials, |

/1 T Tol) / " cos(narceos x) cos(marccos x) 2
SOV TV dx = X X 0
~1 V1—x2 -1 L—x2

Reintroducing 6 = arccos x gives,

dx

do = ————
Vi<

and the integral becomes

0 T
—/7T cos(nf) cos(m@) df = /0 cos(nf) cos(m@) db.

Now, we use the fact that

cos(n+ m)# + cos(n — m)0
5

cos(n@) cos(mb) =
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We have:
/7r cos(n+ m)6# + cos(n — m)é i
0 2 '
If m# n, we get
1 sin((n+ m)@) + 1 sin((n — m)6) T 0
2(n+ m) 2(n— m) o
if m= n, we have
;sin((n—l— m)0) + x T T
2(n + m) 2|, 2

Hence, the Chebyshev polynomials are orthogonal.
SDSJ
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Zeros and Extrema of Chebyshev Polynomials — Proof.

Zeros and Extrema of Chebyshev Polynomials.

Theorem

The Chebyshev polynomial of degree n > 1 has n simple zeros in
[—1,1] at
2k — 1
X) = COS (—7‘(‘), k=1,...,n.
2n

Moreover, T,(x) assumes its absolute extrema at

k
x;:cos(—”), with To(x)) = (=1)%, k=1,....n— 1.

n

Payoff: No matter what the degree of the polynomial, the oscilla-

tions are kept under control!!!
SDSJO
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Monic Chebyshev Polynomials, |

Let:
(2k —1 ) , (kw)
Xk = COS m), Xx,=cos|— ).
2n n

Ta(xxk) = cos(narccos(xk)) = cos (n arccos (cos (2’;;171')))
cos (%W) =0, +

Then:

nsin(narccos(x))

V1—x2 ’

T)(x) = dix[cos(n arccos(x))] =

_ nsin(narccos(cos(kT’T))) _ nsin(kw) _
T0k) - = Jimcos2(Ex)  sn(5F) =6

Ta(x,) = cos (narccos (cos (’%))) = cos(km) = (=1)k. /

Definition (Monic Polynomial)

A monic polynomial is a polynomial with leading coefficient 1.

We get the monic Chebyshev polynomials T,(x) by dividing T,(x)
by 2n=1 5 > 1. Hence,
~ ~ 1

Th(x) = on_1 Th(x),

>,
2 n=

They satisfy the following recurrence relations

) h(x) = Xfl(X)—%To(X)
Trt1(x) = xTp(x)— %Tn_l(x).
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Properties Properties
Monic Chebyshev Polynomials, Il The Monic Chebyshev Polynomials
The location of the zeros and extrema of T,(x) coincides with 1 ‘ I
those of T,(x), however the extreme values are — Tl
—o T2(X)
. , (_1)k \ a—a T3(X)
T”(Xk) = on—1° k=1,...,n—1. —o T4(x)
0.5 a—a4 T5(x)
Definition
Let P, denote the set of all monic polynomials of degree n. ok i
Theorem (Min-Max) T |
The monic Chebyshev polynomials T,(x), have the property that 05 |
= 7'—n < Pn ) Pn Nn‘ B 7
1 Xé?fﬁ”\ (X)’—-xé??ﬁu’ ()|, VPa(x) € P
g . e 1 | \ \
Moreover, equality can only occur if Py(x) = Tp(x). )SO -1 -05 0 05 1 SDSO
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Optimal Node Placement in Lagrange Interpolation, | Optimal Node Placement in Lagrange Interpolation, Il

If xo,x1,...,x, are distinct points in the interval [-1,1] and

Theorem

f € C"1[—1,1], and P(x) the n*" d interpolating L
< [ 11, and P(x) the n° degree interpolating Lagrange If P(x) is the interpolating polynomial of degree at most n with
polynomial, then Vx € [—1,1] 3¢(x) € (—1,1) so that
nodes at the roots of Tpy1(x), then
FIEX)) T
f(x) — P(x) = —>2 T (x = xi). Flx) — Plx)| < F(n+1)
e L max 1) = PO)| < o max A7),
We have no control over f("*1)(£(x)), but we can place the nodes Vf e C"-1,1].
in a clever way as to minimize the maximum of [;_(x — xx). ’
Since [[;_o(x — xx) is a monic polynomial of degree (n+ 1), we Extending to any interval: The transformation

know the min-max is obtained when the nodes are chosen so that

n
~ . 2k +1
kl:[O(x —xk) = Tpht1(x), ie xx=cos (mﬂ') .

. 1
x:i[(b—a)x+(a+b)]

transforms the nodes x, in [—1, 1] into the corresponding nodes Xy
SDSU in [a, b]. SDSO
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Example: Interpolating f(x) = x? e — The Error.

Interpolating f(x) = x2 e*.
3 \
= f®
25l | — Taylor2(x)
L agrange2Equi Spaced(x)
— Lagrange20ptimal(x)

Joe Mahaffy, (mahaffy@math.sdsu.edu)
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6—o Deviation: EquiSpaced
— Deviation: Optimal
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Example: Interpolating f(x) = x? e — The Error.
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Least Squares: Revisited Introduction

Before we move on to new and exciting orthogonal polynomials
with exotic names... Let's take a moment (or two) and look at the
usage of Least Squares Approximation.

This section is a “how-to” with quite a few applied example of
least squares approximation...
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Least Squares, redux More than one variable? — No problem!

Example #1 — Warm-up

First we consider the problem of fitting 1st, 2nd, and 3rd degree
polynomials to the following data:

x=1[1.01.11.31.51.9 2.1]°

y = [1.84 1.90 2.31 2.65 2.74 3.18]°

matlab;; [First we define the matrices]

A1 = [ones(size(x)) x];

A2 = [A1 x.*x];

A3 = [A2 x.*x.*x ];

[Then we solve the Normal Equations]

pcoefl = Al\y;

pcoef2 = A2\y;

pcoef3 = A3\y;

Note: The matrices A1, A2, and A3 are “tall and skinny.” Normally we
would compute (An’ - An)~1(An’ - y), however when matlab encounters
An\y it automatically gives us a solution in the least squares sense.

Joe Mahaffy, (mahaffy@math.sdsu.edu)

Examples

Least Squares, redux More than one variable? — No problem!

Example #1 — Warm-up

Finally, we compute the error

matlab>> pierr = polyval(flipud(pcoefl),x) - y;
p2err = polyval(flipud(pcoef2),x) - y;
p3err = polyval(flipud(pcoef3),x) - y;
disp([sum(plerr.*plerr) sum(p2err.*p2err)

sum(p3err.*p3err)])
Which gives us the fitting errors

PE™ = 0.0877, PY™T =0.0699, P =0.0447

Joe Mabhaffy, (mahaffy@math.sdsu.edu)
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Example #1 — Warm-up

We now have the coefficients for the polynomials, let’s plot:
matlab>> xv = 1.0:0.01:2.1;

pl = polyval(flipud(pcoefl),xv);
p2 = polyval(flipud(pcoef2),xv);
p3 = polyval(flipud(pcoef3),xv);

plot(xv,p3,’k-’,’linewidth’,3); hold on;
plot(x,y,’ko’,’linewidth’,3); hold off
Optimal Cubic Approximation

Optimal Linear Approximation Optimal Quadratic Approximation

2.8]

2.6

2.4

2.2]

2 LSQ-error: 0.087656 2 LSQ-error: 0.069900 2| LSQ-error: 0.044729

18] 18 18]

1 12 14 16 18 2 1 12 14 16 18 2 1 12 14 16 18
Figure: The least squares polynomials p;(x), p2(x), and p3(x).
Joe Mahaffy, (mahaffy@math.sdsu.edu)
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Example #2 — Something More Exotic

Consider the same data:
x=1[1.01.11.31.51.9 2.1]°
y = [1.84 1.90 2.31 2.65 2.74 3.18]°

2

SDSO
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But let’s find the best fit of the form a + by/x to this data! Notice
that this expression is linear in its parameters a, b, so we can solve

the corresponding least squares problem!

matlab>> A = [ones(size(x)) sqrt(x)];

pcoef = A\y;
xv = 1.0:0.01:2.1;
fv = pcoef (1) + pcoef(2)*sqrt(xv);

plot(xv,fv,’k-’,’linewidth’,3); hold on;
plot(x,y,’ko’,’linewidth’,3); hold off;

Joe Mahaffy, (mahaffy@math.sdsu.edu)
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Examples

Least Squares, redux More than one variable? — No problem!

Example #2 — Something More Exotic

Optimal a+b x 08 Approximation
3.2 T T T T

2.8f

2.6f

24r

2.2r

2F LSQ-error: 0.074920

181

Figure: The best fit of the form a + by/x.

We compute the fitting error:
matlab>> ferr = pcoef(1) + pcoef(2)*sqrt(x) - y;

disp(sum(ferr.*ferr))

Which gives us P{E;jrb\/;(} = 0.0749
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Getting Even More Exotic?

Getting Even More Exotic?

As long as the model is linear in its parameters, we can solve the
least squares problem.

Non-linear dependence will have to wait until Math 693a.

We can fit this model:
Ml(av b7 G, d) =a-+ bX?j/2 —+ C/\/; + deSin(X)

Just define the matrix

matlab>> A = [ones(size(x)) x.7(3/2) 1./sqrt(x) exp(sin(x))1;

and compute the coefficients

matlab>> coef = A\y;

etc...
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Examples
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Getting Multi-Dimensional

Optimal "Exotic" Model
3.2 T .

2.8f

2.6f

2.4F

221

2r LSQ-error: 0.062771 B

1 12 14 16 18 2
The optimal approximation of this form is

11.0059
X

16.4133 — 0.9970x%/2 — — 1.1332¢5"0%)

It seems quite unlikely the model
/\/ll(a, b, C, d) =a-+ bX3/2 + C/\/;_i_ desin(x)

will ever be useful.

However, we have forgotten about one important aspect of the
problem — so far our models have depended on only one variable,
X.

How do we go about fitting multi-dimensional data?

Chebyshev Polynomials & Least Squares, redux — (31/45)
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Example: Going 2D

Examples

Least Squares, redux More than one variable? — No problem!

matlab>> x=1:0.25:5;
y=1:0.25:5;
[X,Y]=meshgrid(x,y);
Fxy=1+sqrt (X)+Y.”3+0.05*randn(size (X)) ;
surf (x,y,Fxy)

Figure: 2D-data set, the vertexes on the surface are our data points.
SDSJO

Example: Going 2D

Lets try to fit a simple 3-parameter model to this data

M(a, b,c) = a+ bx + cy

matlab>> sz = size®X);
Bm = reshape(X,prod(sz),1);
Cm = reshape(Y,prod(sz),1);
Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm];

coef = A \ RHS;

fit = coef(1l) + coef(2)*X + coef(3)*Y;
fitError = Fxy - fit;

surf (x,y,fitError)
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Least Squares, redux More than one variable? — No problem!

Example: Going 2D

Fit (Model 1) Error (Model 1)

Figure: The optimal model fit, and the fitting error for the
least squares best-fit in the model space M(a, b,c) = a +
bx + cy. Here, the total LSQ-error is 42,282.
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Example: Going 2D

Lets try to fit a simple 4-parameter (bi-linear) model to this data

M(a, b,c) = a+ bx + cy + dxy

matlab>> sz = size®X);
Bm = reshape(X,prod(sz),1);
Cm = reshape(Y,prod(sz),1);
Dm = reshape(X.*Y,prod(sz),1);
Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm Dm];

coef = A \ RHS;

fit = coef(l) + coef(2)*X + coef(3)*Y + coef(4)*X.xY;
fitError = Fxy - fit;

surf (x,y,fitError)

Joe Mahaffy, (mahaffy@math.sdsu.edu)
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Examples

Least Squares, redux More than one variable? — No problem!

Example: Going 2D

Fit (Model 2) Error (Model 2)

Figure: The fitting error for the least squares best-fit in the
model space M(a, b,c) = a+ bx+ cy + dxy. — Still a pretty
bad fit. Here, the total LSQ-error is still 42,282.
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Since the main problem is in the y-direction, we fit try a
4-parameter model with a quadratic term in y

M(a, b,c) = a+ bx + cy + dy?

matlab>> sz = size(X);
Bm = reshape(X,prod(sz),1);
Cm = reshape(Y,prod(sz),1);
Dm = reshape(Y.*Y,prod(sz),1);
Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm Dm];

coef = A \ RHS;

fit = coef(1l) + coef(2)*X + coef(3)*Y + coef(4)*Y.xY;
fitError = Fxy - fit;

surf (x,y,fitError)
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Examples

Least Squares, redux More than one variable? — No problem!

Example: Going 2D

Fit (Model 3) Error (Mode! 3)

Figure: The fitting error for the least squares best-fit in the
model space M(a, b,c) = a+ bx + cy + dy?>. — We see a
significant drop in the error (one order of magnitude); and

the total LSQ-error has dropped to 578.8. sosT
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Least Squares, redux More than one variable? — No problem!

Example: Going 2D

75 of 10

We notice something interesting: the addition of the xy-term to
the model did not produce a drop in the LSQ-error. However, the
y? allowed us to capture a lot more of the action.

The change in the LSQ-error as a function of an added term is one
way to decide what is a useful addition to the model.

Why not add both the xy and y? always?

Xy y? Both

r(A) 86.2 107.3 1705
k(ATA) 7,422 11,515 29,066

Table: Condition numbers for the A-matrices (and
associated Normal Equations) for the different models.
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[SETE Examples
Least Squares, redux More than one variable? — No problem! Least Squares, redux More than one variable? — No problem!

Example: Going 2D Example: Going 2D

We fit a 5-parameter model with a quadratic term in y Fit (Model 4) Error (Model 4)

M(a, b,c) = a+ bx + cy + dy® + ey®

matlab>> sz = size(X);

Bm = reshape(X,prod(sz),1);

Cm = reshape(Y,prod(sz),1);

Dm = reshape(Y.*Y,prod(sz),1);
Em = reshape(Y.*Y.*Y,prod(sz),1);
Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm Dm Em];

coef = A \ RHS;

fit = coef(1) + coef(2)*X + coef(3)*Y + coef (4)*Y.*Y + Figure: The fitting error for the least squares best-fit in the
coef (5)*Y./3; model space M(a, b,c) = a+ bx + cy + dy® + ey3>. — We
fitError = Fxy - fit; now have a pretty good fit. The LSQ-error is now down to
surf (x,y,fitError) 0.9864.
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Examples
Least Squares, redux More than one variable? — No problem!

Examples
Least Squares, redux More than one variable? — No problem!

Example: Going 2D Moving to Even Higher Dimensions

Model LSQ-error K(ATA) At this point we can state the Linear Least Squares fitting problem
in any number of dimensions, and we can use exotic models if we
a+ bx+cy 42,282 278 want to.
a+ bx+cy + dxy 42,282 7,422
a+ bx + cy + dy? 578.8 11,515 In 3D we need 10 parameters to fit a model with all linear, and
a+ bx +cy + ey’ 2.695 107,204 second order terms
2 3

a+ bx +cy +dz + ex? + fy? + gz° + hxy + ixz + jyz
Table: Summary of LSQ-error and conditioning of the Normal

Equations for the various models. We notice that additional With ny, n,, and n, data points in the x-, y-, and z-directions
columns in the A-matrix (additional model parameters) have a (respectively) we end up with a matrix A of dimension
severe effect on the conditioning of the Normal Equations. (ng - ny - n;) x 10.
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Examples
Least Squares, redux More than one variable? — No problem!

[ll-conditioning of the Normal Equations

Needless(?) to say, the normal equations can be quite
ill-conditioned in this case. The ill-conditioning can be eased by
searching for a set of orthogonal functions with respect to the
inner product

(.60 = | / | ey, 2)ey,2) ey dz

a

That's *sometimes* possible, but we'll leave the details as an
exercise for a dark and stormy night...

Joe Mahaffy, (mahaffy@math.sdsu.edu) Chebyshev Polynomials & Least Squares, redux — (45/45)




