
Polynomial Interpolation Cubic Splines Cubic Splines	Polynomial Interpolation Cubic Splines Cubic Splines
	Outline
Numerical Analysis and Computing Lecture Notes #06 — Interpolation and Polynomial Approximation — Piecewise Polynomial Approximation; Cubic Splines	 Polynomial Interpolation Checking the Roadmap Undesirable Side-effects New Ideas
Joe Mahaffy, <pre></pre>	 Cubic Splines Introduction Building the Spline Segments Associated Linear Systems Cubic Splines Error Bound Solving the Linear Systems
Spring 2010 SDSU	SDSU
Joe Mahaffy, (mahaffy@math.sdsu.edu) Piecewise Poly. Approx.; Cubic Splines — (1/29) Polynomial Interpolation Checking the Roadmap	Joe Mahaffy, (mahaffy@math.sdsu.edu) Piecewise Poly. Approx.; Cubic Splines - (2/29) Polynomial Interpolation Checking the Roadmap
Polynomial Interpolation Cubic Splines Undesirable Side-effects	Polynomial Interpolation Cubic Splines Undesirable Side-effects
Polynomial Interpolation Checking the Roadmap Cubic Splines Undesirable Side-effects Cubic Splines New Ideas	Polynomial Interpolation Cubic Splines Cubic Splines New Ideas
Polynomial Interpolation Cubic Splines Cubic Splines Checking the Roadmap Undesirable Side-effects New Ideas Checking the Roadmap Interpolatory Polynomials Inspired by Weierstrass, we have looked at a number of strategies for	Polynomial Interpolation Cubic Splines Cubic Splines Checking the Roadmap Undesirable Side-effects New Ideas Admiring the Roadmap Are We Done? We even figured out how to modify Newton's divided differences to
Polynomial Interpolation Cubic Splines Cubic Splines Checking the Roadmap Undesirable Side-effects New Ideas Checking the Roadmap Interpolatory Polynomials Inspired by Weierstrass, we have looked at a number of strategies for approximating arbitrary functions using polynomials. Interpolatory Polynomials Taylor Detailed information from one point, excellent locally, but not	Polynomial Interpolation Cubic Splines Cubic Splines Checking the Roadmap Undesirable Side-effects New Ideas Admiring the Roadmap Are We Done? We even figured out how to modify Newton's divided differences to produce representations of arbitrary osculating polynomials
Polynomial Interpolation Cubic Splines Cubic Splines Ludesirable Side-effects New IdeasChecking the Roadmap Undesirable Side-effects New IdeasChecking the Roadmap Undesirable Side-effects New IdeasInterpolatory PolynomialsInterpolatory PolynomialsInspired by Weierstrass, we have looked at a number of strategies for approximating arbitrary functions using polynomials.TaylorDetailed information from one point, excellent locally, but not very successful for extended intervals.Lagrange $\leq n$ th degree poly. interpolating the function in $(n + 1)$ pts. Representation: Theoretical using the Lagrange coefficients $L_{n,k}(x)$; pointwise using Neville's method; and more use-	Polynomial Interpolation Cubic Splines Cubic SplinesChecking the Roadmap Undesirable Side-effects New IdeasAdmiring the Roadmap Are We Done?We even figured out how to modify Newton's divided differences to produce representations of arbitrary osculating polynomials We have swept a dirty little secret under the rug: —For all these interpolation strategies we get — provided the underlying function is smooth enough, <i>i.e.</i> $f \in C^{(m+1)(n+1)}([a, b])$

— (3/29)

— (4/29)

Polynomial Interpolation Cubic Splines Cubic Splines..

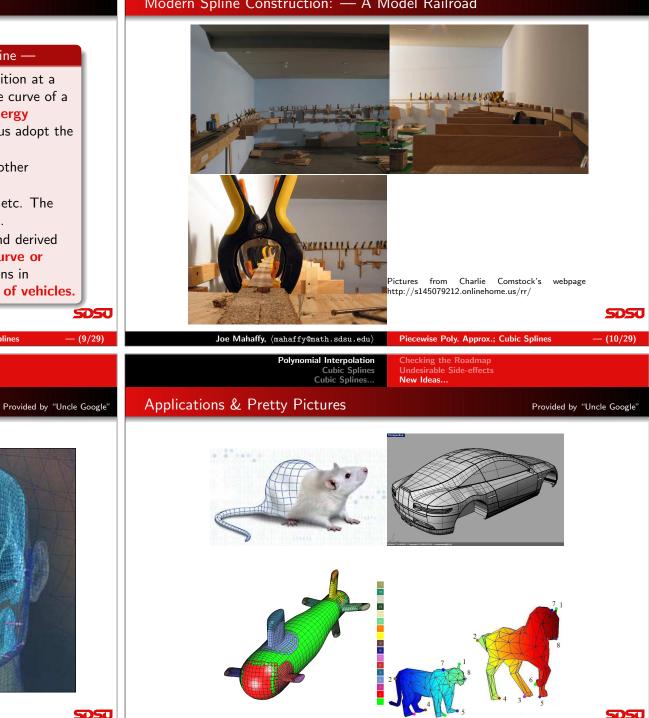
Checking the Roadman Undesirable Side-effects New Ideas...

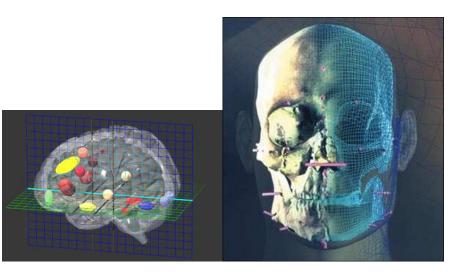
Polynomial Interpolation Cubic Splines Cubic Splines.

Checking the Roadman Undesirable Side-effects New Ideas..

An Old Idea: Splines

(Edited for Space, and "Content") Wikipedia Definition: Spline —


A spline consists of a long strip of wood (a lath) fixed in position at a number of points. Shipwrights often used splines to mark the curve of a hull. The lath will take the shape which minimizes the energy required for bending it between the fixed points, and thus adopt the smoothest possible shape.


Later craftsmen have made splines out of rubber, steel, and other elastomeric materials.

Spline devices help bend the wood for pianos, violins, violas, etc. The Wright brothers used one to shape the wings of their aircraft.

In 1946 mathematicians started studying the spline shape, and derived the piecewise polynomial formula known as the spline curve or function. This has led to the widespread use of such functions in computer-aided design, especially in the surface designs of vehicles.

Modern Spline Construction: — A Model Railroad

- (11/29)

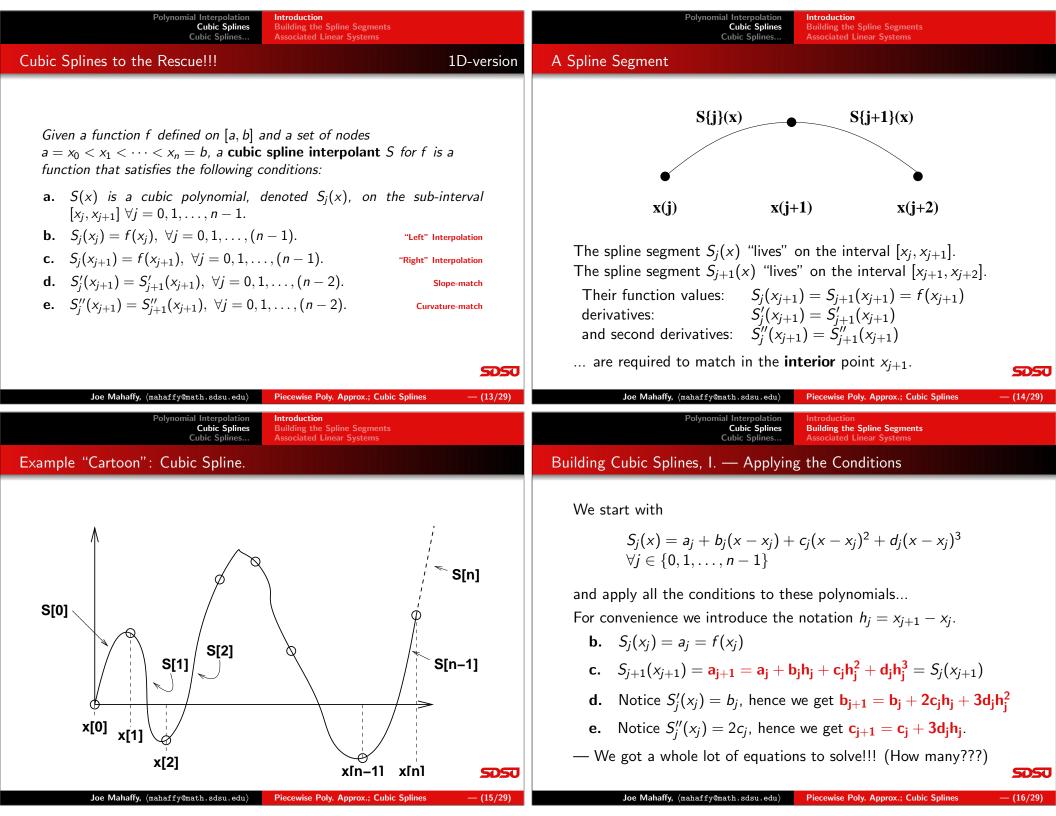
Joe Mahaffy, (mahaffy@math.sdsu.edu)

Applications & Pretty Pictures

Polynomial Interpolation

Cubic Splines

Cubic Solines


Piecewise Poly. Approx.; Cubic Splines

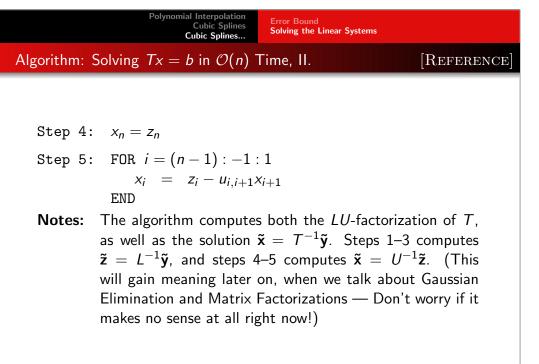
Checking the Roadmap

Undesirable Side-effects

New Ideas..

(12/29)

Polynomial Interpolation Cubic Splines Cubic Splines Associated Linear Systems	Polynomial Interpolation Cubic Splines Cubic Splines Associated Linear Systems
Cubic Splines, II. — Solving the Resulting Equations.	Cubic Splines, III. — A Linear System of Equations
We solve [e] for $d_j = \frac{c_{j+1} - c_j}{3h_j}$, and plug into [c] and [d] to get [c'] $a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3}(2c_j + c_{j+1}),$ [d'] $b_{j+1} = b_j + h_j(c_j + c_{j+1}).$ We solve for b_j in [c'] and get [*] $b_j = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}).$ Reduce the index by 1, to get [*'] $b_{j-1} = \frac{1}{h_{j-1}}(a_j - a_{j-1}) - \frac{h_{j-1}}{3}(2c_{j-1} + c_j).$ Plug [*] (lhs) and [*'] (rhs) into the index-reduced-by-1 version of [d'], <i>i.e.</i> [d''] $b_j = b_{j-1} + h_{j-1}(c_{j-1} + c_j).$	After some "massaging" we end up with the linear system of equations for $j \in \{1, 2,, n-1\}$ (the interior nodes). $h_{j-1}c_{j-1}+2(h_{j-1}+h_j)c_j+h_jc_{j+1} = \frac{3}{h_j}(a_{j+1}-a_j) - \frac{3}{h_{j-1}}(a_j-a_{j-1}).$ Notice: The only unknowns are $\{c_j\}_{j=0}^n$, since the values of $\{a_j\}_{j=0}^n$ and $\{h_j\}_{j=0}^{n-1}$ are given. Once we compute $\{c_j\}_{j=0}^{n-1}$, we get $b_j = \frac{a_{j+1}-a_j}{h_j} - \frac{h_j(2c_j+c_{j+1})}{3}$, and $d_j = \frac{c_{j+1}-c_j}{3h_j}$. We are almost ready to solve for the coefficients $\{c_j\}_{j=0}^{n-1}$, but we only have $(n-1)$ equations for $(n+1)$ unknowns
Joe Mahaffy, (mahaffy@math.sdsu.edu) Piecewise Poly. Approx.; Cubic Splines — (17/29) Polynomial Interpolation Cubic Splines Building the Spline Segments	Joe Mahaffy, (mahaffy@math.sdsu.edu) Piecewise Poly. Approx.; Cubic Splines — (18/29) Polynomial Interpolation Cubic Splines Building the Spline Segments
Cubic Splines Associated Linear Systems Cubic Splines 1 of 3	Cubic Splines. Associated Linear Systems 2 of 3 Cubic Splines, IV. — Completing the System 2 of 3
We can complete the system in many ways, some common ones are Natural boundary conditions: $\begin{bmatrix} n1 \end{bmatrix} 0 = S''_0(x_0) = 2c_0 \Rightarrow c_0 = 0$ $\begin{bmatrix} n2 \end{bmatrix} 0 = S''_n(x_n) = 2c_n \Rightarrow c_n = 0$	We can complete the system in many ways, some common ones are Clamped boundary conditions: (Derivative known at endpoints). [c1] $S'_0(x_0) = b_0 = f'(x_0)$ [c2] $S'_{n-1}(x_n) = b_n = b_{n-1} + h_{n-1}(c_{n-1} + c_n) = f'(x_n)$ [c1] and [c2] give the additional equations [c1'] $2h_0c_0 + h_0c_1 = \frac{3}{h_0}(a_1 - a_0) - 3f'(x_0)$ [c2'] $h_{n-1}c_{n-1} + 2h_{n-1}c_n = 3f'(x_n) - \frac{3}{h_{n-1}}(a_n - a_{n-1}).$


— (19/29)

— (20/29)

Polynomial Interpolation Introduction Cubic Splines Building the Spline Segments Cubic Splines Associated Linear Systems	Polynomial Interpolation Cubic Splines Cubic Splines Associated Linear Systems
Cubic Splines, IV. — Completing the System 3 of 3	Natural Boundary Conditions: Linear System, $A\tilde{\mathbf{x}} = \tilde{\mathbf{y}}$
Given a function f defined on $[a, b]$ and a set of nodes $a = x_0 < x_1 < \cdots < x_n = b$, a cubic spline interpolant S for f is a function that satisfies the following conditions:	We end up with a linear system of equations, $A\mathbf{ ilde{x}}=\mathbf{ ilde{y}}$, where
a. $S(x)$ is a cubic polynomial, denoted $S_j(x)$, on the sub-interval $[x_j, x_{j+1}] \ \forall j = 0, 1,, n-1.$ b. $S_j(x_j) = f(x_j), \ \forall j = 0, 1,, (n-1).$ "Left" Interpolation c. $S_j(x_{j+1}) = f(x_{j+1}), \ \forall j = 0, 1,, (n-1).$ "Right" Interpolation d. $S'_j(x_{j+1}) = S'_{j+1}(x_{j+1}), \ \forall j = 0, 1,, (n-2).$ Slope-match e. $S''_j(x_{j+1}) = S''_{j+1}(x_{j+1}), \ \forall j = 0, 1,, (n-2).$ Curvature-match f. One of the following sets of boundary conditions is satisfied: 1. $S''(x_0) = S''(x_n) = 0, -$ free / natural boundary	$A = \begin{bmatrix} 1 & 0 & 0 & \cdots & \cdots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & \ddots & & \vdots \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \cdots & \cdots & 0 & 0 & 1 \end{bmatrix},$
2. $S'(x_0) = f'(x_0)$ and $S'(x_n) = f'(x_n)$, - clamped boundary	Boundary Terms: marked in red-bold.
Joe Mahaffy, (mahaffy@math.sdsu.edu) Piecewise Poly. Approx.; Cubic Splines — (21/29)	Joe Mahaffy, (mahaffy@math.sdsu.edu) Piecewise Poly. Approx.; Cubic Splines — (22/29
Polynomial Interpolation Introduction Cubic Splines Building the Spline Segments Cubic Splines Associated Linear Systems	Polynomial Interpolation Introduction Cubic Splines Building the Spline Segments Cubic Splines Associated Linear Systems
Natural Boundary Conditions: Linear System, $A\mathbf{\tilde{x}} = \mathbf{\tilde{y}}$	Clamped Boundary Conditions: Linear System
We end up with a linear system of equations, $A\mathbf{\widetilde{x}}=\mathbf{\widetilde{y}}$, where	We end up with a linear system of equations, $A\mathbf{ ilde{x}} = \mathbf{ ilde{y}}$, where
$ \begin{bmatrix} 0 \\ \frac{3(a_2-a_1)}{h_1} - \frac{3(a_1-a_0)}{h_0} \\ \vdots \\ \vdots$	$\begin{bmatrix} 2h_0 & h_0 & 0 & \cdots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & \ddots & \vdots \end{bmatrix}$
$\widetilde{\mathbf{y}} = \begin{vmatrix} \vdots \\ \frac{3(a_n - a_{n-1})}{h_{n-1}} - \frac{3(a_{n-1} - a_{n-2})}{h_{n-2}} \end{vmatrix}, \qquad \widetilde{\mathbf{x}} = \begin{vmatrix} \vdots \\ c_{n-1} \end{vmatrix}$	$0 \qquad h_1 \qquad 2(h_1+h_2) \qquad h_2 \qquad \ddots \qquad \vdots$
$\frac{3(a_n - a_{n-1})}{h_{n-1}} - \frac{3(a_{n-1} - a_{n-2})}{h_{n-2}} \qquad $	$A = \begin{bmatrix} \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$
x̃ are the unknowns (the quantity we are solving for!) Boundary Terms: marked in red-bold.	$A = \begin{bmatrix} 0 & h_1 & 2(h_1 + h_2) & h_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \cdots & 0 & h_{n-1} & 2h_{n-1} \end{bmatrix}$
SDSU	Boundary Terms: marked in red-bold.

Polynomial Interpolation Cubic Splines Cubic Splines Associated Linear Systems	Polynomial Interpolation Cubic Splines Cubic Splines Cubic Splines
Clamped Boundary Conditions: Linear System	Cubic Splines, The Error Bound
We end up with a linear system of equations, $A\mathbf{\tilde{x}} = \mathbf{\tilde{y}}$, where $\begin{bmatrix} \frac{3(a_1-a_0)}{b_2} - \mathbf{3f}'(\mathbf{x}_0) \end{bmatrix} \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_0 \end{bmatrix}$	No numerical story is complete without an error bound If $f \in C^4[a, b]$, let $M = \max_{a \le x \le b} f^4(x) .$
$\tilde{\mathbf{y}} = \begin{bmatrix} \frac{3(a_1 - a_0)}{h_0} - 3f'(\mathbf{x}_0) \\ \frac{3(a_2 - a_1)}{h_1} - \frac{3(a_1 - a_0)}{h_0} \\ \vdots \\ \frac{3(a_n - a_{n-1})}{h_{n-1}} - \frac{3(a_{n-1} - a_{n-2})}{h_{n-2}} \\ 3f'(\mathbf{x}_n) - \frac{3(a_n - a_{n-1})}{h_{n-1}} \end{bmatrix}, \tilde{\mathbf{x}} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \\ c_n \end{bmatrix}$	If S is the unique clamped cubic spline interpolant to f with respect to the nodes $a = x_0 < x_1 < \dots < x_n = b$, then with $h = \max_{0 \le j \le n-1} (x_{j+1} - x_j) = \max_{0 \le j \le n-1} h_j$
Boundary Terms: marked in red-bold.	$\max_{a\leq x\leq b} f(x)-S(x) \leq \frac{5Mh^4}{384}$
Joe Mahaffy, (mahaffy@math.sdsu.edu) Piecewise Poly. Approx.; Cubic Splines — (25/29)	Joe Mahaffy, (mahaffy@math.sdsu.edu) Piecewise Poly. Approx.; Cubic Splines — (26/29)
Polynomial Interpolation Error Bound	Polynomial Interpolation
Cubic Splines Cubic Splines	Cubic Splines Solving the Linear Systems
Cubic Splines Solving the Linear Systems Banded Matrices [REFERENCE]	
Cubic Splines	Cubic Splines Solving the Linear Systems

— (27/29)

SDSU

— (29/29)

Joe Mahaffy, (mahaffy@math.sdsu.edu) Piecewise Poly. Approx.; Cubic Splines