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Checking the Roadmap Interpolatory Polynomials

Inspired by Weierstrass, we have looked at a number of strategies for
approximating arbitrary functions using polynomials.

Taylor
Detailed information from one point, excellent locally, but not
very successful for extended intervals.

Lagrange

≤ nth degree poly. interpolating the function in (n + 1) pts.

Representation: Theoretical using the Lagrange coefficients
Ln,k (x); pointwise using Neville’s method; and more use-
ful/general using Newton’s divided differences.

Hermite

≤ (2n + 1)th degree polynomial interpolating the function, and
matching its first derivative in (n + 1) points.

Representation: Theoretical using two types of Hermite coef-
ficients Hn,k (x), and bHn,k (x); and more useful/general using a
modification of Newton’s divided differences.

With (n + 1) points, and a uniform matching criteria of m derivatives in
each point we can talk these in terms of the broader class of osculating
polynomials with:

Taylor(m,n=0), Lagrange(m=0,n), Hermite(m=1,n); with resulting
degree d ≤ (m + 1)(n + 1)− 1.
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Admiring the Roadmap... Are We Done?

We even figured out how to modify Newton’s divided differences to
produce representations of arbitrary osculating polynomials...

We have swept a dirty little secret under the rug: —

For all these interpolation strategies we get — provided the
underlying function is smooth enough, i.e. f ∈ C (m+1)(n+1)([a, b])
— errors of the form∏n

i=0(x − xi )
(m+1)

((m + 1)(n + 1))!︸ ︷︷ ︸
η(x)

f ((m+1)(n+1))(ξ(x)), ξ(x) ∈ [a, b]

We have seen that with the xi ’s dispersed (Lagrange /
Hermite-style), the controllable part, η(x), of the error term is
better behaved than for Taylor polynomials. However, we have no
control over the ((n + 1)(m + 1))th derivative of f .
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Problems with High Order Polynomial Approximation

We can force a polynomial of high degree to pass through as many
points (xi , f (xi )) as we like. However, high degree polynomials
tend to fluctuate wildly between the interpolating points.
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Alternative Approach to Interpolation Divide-and-Conquer

The oscillations tend to be extremely bad close to the end points
of the interval of interest, and (in general) the more points you put
in, the wilder the oscillations get!

Clearly, we need some new tricks!

Idea: Divide the interval into smaller sub-intervals, and construct
different low degree polynomial approximations (with small
oscillations) on the sub-intervals.

This is called Piecewise Polynomial Approximation.

Simplest continuous variant: Piecewise Linear Approximation:
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Piecewise Linear Approximation Connect-the-Dots
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Figure: Piecewise linear approximation of the same data as on
slide 5. Is this the end of excessive oscillations?!?
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Problem with Piecewise Linear Approximation

The piecewise linear interpolating function is not differentiable at the
“nodes,” i.e. the points xi . (Typically we want to do more than just plot
the polynomial... and even plotting shows sharp corners!)

Idea: Strengthened by our experience with Hermite polynomials, why
not generate piecewise polynomials that match both the function
value and some number of derivatives in the nodes!

The Return of the Cubic Hermite Polynomial!

If, for instance f (x) and f ′(x) are known in the nodes, we can use a
collection of cubic Hermite polynomials H3

j (x) to build up such a
function.

But... what if f ′(x) is not known (in general getting measurements of
the derivative of a physical process is much more difficult and unreliable
than measuring the quantity itself), can we still generate an interpolant
with continuous derivative(s)???
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An Old Idea: Splines

(Edited for Space, and “Content”) Wikipedia Definition: Spline —

A spline consists of a long strip of wood (a lath) fixed in position at a
number of points. Shipwrights often used splines to mark the curve of a
hull. The lath will take the shape which minimizes the energy
required for bending it between the fixed points, and thus adopt the
smoothest possible shape.

Later craftsmen have made splines out of rubber, steel, and other
elastomeric materials.

Spline devices help bend the wood for pianos, violins, violas, etc. The
Wright brothers used one to shape the wings of their aircraft.

In 1946 mathematicians started studying the spline shape, and derived
the piecewise polynomial formula known as the spline curve or
function. This has led to the widespread use of such functions in
computer-aided design, especially in the surface designs of vehicles.
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Modern Spline Construction: — A Model Railroad

Pictures from Charlie Comstock’s webpage
http://s145079212.onlinehome.us/rr/
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Applications & Pretty Pictures Provided by “Uncle Google”
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Applications & Pretty Pictures Provided by “Uncle Google”
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Cubic Splines to the Rescue!!! 1D-version

Given a function f defined on [a, b] and a set of nodes
a = x0 < x1 < · · · < xn = b, a cubic spline interpolant S for f is a
function that satisfies the following conditions:

a. S(x) is a cubic polynomial, denoted Sj(x), on the sub-interval
[xj , xj+1] ∀j = 0, 1, . . . , n − 1.

b. Sj(xj) = f (xj), ∀j = 0, 1, . . . , (n − 1). “Left” Interpolation

c. Sj(xj+1) = f (xj+1), ∀j = 0, 1, . . . , (n − 1). “Right” Interpolation

d. S ′
j (xj+1) = S ′

j+1(xj+1), ∀j = 0, 1, . . . , (n − 2). Slope-match

e. S ′′
j (xj+1) = S ′′

j+1(xj+1), ∀j = 0, 1, . . . , (n − 2). Curvature-match
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A Spline Segment

x(j+2)x(j+1)x(j)

S{j}(x) S{j+1}(x)

The spline segment Sj(x) “lives” on the interval [xj , xj+1].
The spline segment Sj+1(x) “lives” on the interval [xj+1, xj+2].

Their function values: Sj(xj+1) = Sj+1(xj+1) = f (xj+1)
derivatives: S ′j (xj+1) = S ′j+1(xj+1)
and second derivatives: S ′′j (xj+1) = S ′′j+1(xj+1)

... are required to match in the interior point xj+1.
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Example “Cartoon”: Cubic Spline.

S[1] S[n−1]

S[n]

S[0]

S[2]

x[n−1]

x[0]

x[2]
x[n]

x[1]
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Building Cubic Splines, I. — Applying the Conditions

We start with

Sj(x) = aj + bj(x − xj) + cj(x − xj)
2 + dj(x − xj)

3

∀j ∈ {0, 1, . . . , n − 1}
and apply all the conditions to these polynomials...

For convenience we introduce the notation hj = xj+1 − xj .

b. Sj(xj) = aj = f (xj)

c. Sj+1(xj+1) = aj+1 = aj + bjhj + cjh
2
j + djh

3
j = Sj(xj+1)

d. Notice S ′j (xj) = bj , hence we get bj+1 = bj + 2cjhj + 3djh
2
j

e. Notice S ′′j (xj) = 2cj , hence we get cj+1 = cj + 3djhj.

— We got a whole lot of equations to solve!!! (How many???)

Joe Mahaffy, 〈mahaffy@math.sdsu.edu〉 Piecewise Poly. Approx.; Cubic Splines — (16/29)



Polynomial Interpolation
Cubic Splines

Cubic Splines...

Introduction
Building the Spline Segments
Associated Linear Systems

Cubic Splines, II. — Solving the Resulting Equations.

We solve [e] for dj =
cj+1 − cj

3hj
, and plug into [c] and [d] to get

[c’] aj+1 = aj + bjhj +
h2

j

3
(2cj + cj+1),

[d’] bj+1 = bj + hj(cj + cj+1).

We solve for bj in [c’] and get

[*] bj =
1

hj
(aj+1 − aj)− hj

3
(2cj + cj+1).

Reduce the index by 1, to get

[*’] bj−1 =
1

hj−1
(aj − aj−1)− hj−1

3
(2cj−1 + cj).

Plug [*] (lhs) and [*’] (rhs) into the index-reduced-by-1 version of [d’],
i.e.

[d”] bj = bj−1 + hj−1(cj−1 + cj).
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Cubic Splines, III. — A Linear System of Equations

After some “massaging” we end up with the linear system of
equations for j ∈ {1, 2, . . . , n − 1} (the interior nodes).

hj−1cj−1+2(hj−1+hj)cj +hjcj+1 =
3

hj
(aj+1−aj)− 3

hj−1
(aj−aj−1).

Notice: The only unknowns are {cj}n
j=0, since the values of

{aj}n
j=0 and {hj}n−1

j=0 are given.

Once we compute {cj}n−1
j=0 , we get

bj =
aj+1 − aj

hj
− hj(2cj + cj+1)

3
, and dj =

cj+1 − cj

3hj
.

We are almost ready to solve for the coefficients {cj}n−1
j=0 , but we

only have (n − 1) equations for (n + 1) unknowns...
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Cubic Splines, IV. — Completing the System 1 of 3

We can complete the system in many ways, some common ones
are...

Natural boundary conditions:

[n1] 0 = S ′′0 (x0) = 2c0 ⇒ c0 = 0

[n2] 0 = S ′′n (xn) = 2cn ⇒ cn = 0
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Cubic Splines, IV. — Completing the System 2 of 3

We can complete the system in many ways, some common ones
are...

Clamped boundary conditions: (Derivative known at endpoints).

[c1] S ′0(x0) = b0 = f ′(x0)

[c2] S ′n−1(xn) = bn = bn−1 + hn−1(cn−1 + cn) = f ′(xn)

[c1] and [c2] give the additional equations

[c1′] 2h0c0 + h0c1 = 3
h0

(a1 − a0)− 3f ′(x0)

[c2′] hn−1cn−1 + 2hn−1cn = 3f ′(xn)− 3
hn−1

(an − an−1).
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Cubic Splines, IV. — Completing the System 3 of 3

Given a function f defined on [a, b] and a set of nodes
a = x0 < x1 < · · · < xn = b, a cubic spline interpolant S for f is a
function that satisfies the following conditions:

a. S(x) is a cubic polynomial, denoted Sj(x), on the sub-interval
[xj , xj+1] ∀j = 0, 1, . . . , n − 1.

b. Sj(xj) = f (xj), ∀j = 0, 1, . . . , (n − 1). “Left” Interpolation

c. Sj(xj+1) = f (xj+1), ∀j = 0, 1, . . . , (n − 1). “Right” Interpolation

d. S ′
j (xj+1) = S ′

j+1(xj+1), ∀j = 0, 1, . . . , (n − 2). Slope-match

e. S ′′
j (xj+1) = S ′′

j+1(xj+1), ∀j = 0, 1, . . . , (n − 2). Curvature-match

f. One of the following sets of boundary conditions is satisfied:

1. S ′′(x0) = S ′′(xn) = 0, – free / natural boundary

2. S ′(x0) = f ′(x0) and S ′(xn) = f ′(xn), – clamped boundary
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Natural Boundary Conditions: Linear System, Ax̃ = ỹ

We end up with a linear system of equations, Ax̃ = ỹ, where

A =



1 0 0 · · · · · · 0

h0 2(h0 + h1) h1
. . .

...

0 h1 2(h1 + h2) h2
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . hn−2 2(hn−2 + hn−1) hn−1

0 · · · · · · 0 0 1


,

Boundary Terms: marked in red-bold.
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Natural Boundary Conditions: Linear System, Ax̃ = ỹ

We end up with a linear system of equations, Ax̃ = ỹ, where

ỹ =


0

3(a2−a1)
h1

− 3(a1−a0)
h0

...
3(an−an−1)

hn−1
− 3(an−1−an−2)

hn−2

0

 , x̃ =


c0

c1
...

cn−1

cn


x̃ are the unknowns (the quantity we are solving for!)

Boundary Terms: marked in red-bold.
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Clamped Boundary Conditions: Linear System

We end up with a linear system of equations, Ax̃ = ỹ, where

A =



2h0 h0 0 · · · · · · 0

h0 2(h0 + h1) h1
. . .

...

0 h1 2(h1 + h2) h2
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . hn−2 2(hn−2 + hn−1) hn−1

0 · · · · · · 0 hn−1 2hn−1


,

Boundary Terms: marked in red-bold.
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Clamped Boundary Conditions: Linear System

We end up with a linear system of equations, Ax̃ = ỹ, where

ỹ =



3(a1−a0)
h0

− 3f ′(x0)
3(a2−a1)

h1
− 3(a1−a0)

h0
...

3(an−an−1)
hn−1

− 3(an−1−an−2)
hn−2

3f ′(xn)− 3(an−an−1)
hn−1


, x̃ =


c0

c1
...

cn−1

cn


Boundary Terms: marked in red-bold.
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Cubic Splines, The Error Bound

No numerical story is complete without an error bound...
If f ∈ C 4[a, b], let

M = max
a≤x≤b

|f 4(x)|.

If S is the unique clamped cubic spline interpolant to f with
respect to the nodes a = x0 < x1 < · · · < xn = b, then with

h = max
0≤j≤n−1

(xj+1 − xj) = max
0≤j≤n−1

hj

max
a≤x≤b

|f (x)− S(x)| ≤ 5Mh4

384
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Banded Matrices [Reference]

We notice that the linear systems for both natural and clamped
boundary conditions give rise to tri-diagonal linear systems.

Further, these systems are strictly diagonally dominant — the
entries on the diagonal outweigh the sum of the off-diagonal
elements (in absolute terms) —, so pivoting (re-arrangement to
avoid division by a small number) is not needed when solving for x̃
using Gaussian Elimination...

This means that these systems can be solved very quickly (we will
revisit this topic later on, but for now the algorithm is on the next
couple of slides), see also “Computational Linear Algebra /
Numerical Matrix Analysis.”Math 543
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Algorithm: Solving Tx = b in O(n) Time, I. [Reference]

Given the N × N tridiagonal matrix T and the N × 1 vector y :
Step 1: The first row:

l1,1 = T1,1
u1,2 = T1,2/l1,1
z1 = y1/l1,1

Step 2: FOR i = 2 : (n − 1)
li ,i−1 = Ti ,i−1
li ,i = Ti ,i − li ,i−1ui−1,i
ui ,i+1 = Ti ,i+1/li ,i
zi = (yi − li ,i−1zi−1)/li ,i

END
Step 3: The last row:

ln,n−1 = Tn,n−1
ln,n = Tn,n − ln,n−1un−1,n
zn = (yn − ln,n−1zn−1)/ln,n
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Algorithm: Solving Tx = b in O(n) Time, II. [Reference]

Step 4: xn = zn

Step 5: FOR i = (n − 1) : −1 : 1
xi = zi − ui ,i+1xi+1

END

Notes: The algorithm computes both the LU-factorization of T ,
as well as the solution x̃ = T−1ỹ. Steps 1–3 computes
z̃ = L−1ỹ, and steps 4–5 computes x̃ = U−1z̃. (This
will gain meaning later on, when we talk about Gaussian
Elimination and Matrix Factorizations — Don’t worry if it
makes no sense at all right now!)
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