## Accelerating Convergence Zeros of Polynomials <br> Polynomial Approximation

Outline
（1）Accelerating Convergence
－Review
－Aitken＇s $\Delta^{2}$ Method
－Steffensen＇s Method
（2）Zeros of Polynomials
－Fundamentals
－Horner＇s Method

## Joe Mahaffy，

〈mahaffy＠math．sdsu．edu〉Department of Mathematics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy

\＃4：Solutions of Equations in One Variable
＂It is rare to have the luxury of quadratic convergence．＂ （Burden－Faires，p．83）

There are a number of methods for squeezing faster convergence out of an already computed sequence of numbers．
We here explore one method which seems the have been around since the beginning of numerical analysis．．．Aitken＇s $\boldsymbol{\Delta}^{2}$ method．It can be used to accelerate convergence of a sequence that is linearly convergent， regardless of its origin or application．
A review of modern extrapolation methods can be found in：
＂Practical Extrapolation Methods：Theory and Applications，＂Avram Sidi，Number 10 in Cambridge Monographs on Applied and Compu－ tational Mathematics，Cambridge University Press，June 2003．ISBN： 0－521－66159－5

## Definition

Suppose the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges to $p$ ，with $p_{n} \neq p$ for all n．If positive constants $\lambda$ and $\alpha$ exists with

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{\alpha}}=\lambda
$$

then $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges to $p$ of order $\alpha$ ，with asymptotic error constant $\lambda$ ．

Linear convergence means that $\alpha=1$ ，and $|\lambda|<1$ ．

Accelerating Convergence
Zeros of Polynomials
Polynomial Approximation

Review，

Assume $\left\{p_{n}\right\}_{n=0}^{\infty}$ is a linearly convergent sequence with limit $p$ ．
Further，assume we are far out into the tail of the sequence（ $n$ large），and the signs of the successive errors agree，i．e．

$$
\operatorname{sign}\left(p_{n}-p\right)=\operatorname{sign}\left(p_{n+1}-p\right)=\operatorname{sign}\left(p_{n+2}-p\right)=\ldots
$$

and that

$$
\frac{p_{n+2}-p}{p_{n+1}-p} \approx \frac{p_{n+1}-p}{p_{n}-p} \approx \lambda \quad(\text { the asymptotic limit })
$$

This would indicate

$$
\begin{aligned}
\left(p_{n+1}-p\right)^{2} & \approx\left(p_{n+2}-p\right)\left(p_{n}-p\right) \\
p_{n+1}^{2}-2 p_{n+1} \mathbf{p}+\mathbf{p}^{2} & \approx p_{n+2} p_{n}-\left(p_{n+2}+p_{n}\right) \mathbf{p}+\mathbf{p}^{2}
\end{aligned}
$$

We solve for $p$ and get．．
Joe Mahaffy，〈mahaffyemath．sdsu．edu〉 $\quad$ \＃4：Solutions of Equations in One Variable $\quad$－（5／58）

Given a sequence finite $\left\{p_{n}\right\}_{n=0}^{N}$ or infinite $\left\{q_{n}\right\}_{n=0}^{\infty}$ sequence which converges linearly to some limit．
Define the new sequences

$$
\hat{p}_{n}=p_{n}-\frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}, \quad n=0,1, \ldots, N-2
$$

or

$$
\hat{q}_{n}=q_{n}-\frac{\left(q_{n+1}-q_{n}\right)^{2}}{q_{n+2}-2 q_{n+1}+q_{n}}, \quad n=0,1, \ldots, \infty
$$

The numerator is a forward difference squared，while the denominator is a second order central difference．

We solve for $p$ and get．．

$$
p \approx \frac{p_{n+2} p_{n}-p_{n+1}^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}
$$

A little bit of algebraic manipulation put this into the classical Aitken form：

$$
\hat{p}_{n}=p=p_{n}-\frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}
$$

Aitken＇s $\Delta^{2}$ Method is based on the assumption that the $\hat{p}_{n}$ we compute from $p_{n+2}, p_{n+1}$ and $p_{n}$ is a better approximation to the real limit $p$ ．

The analysis needed to prove this is beyond the scope of this class，see e．g．Sidi＇s book

Consider the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ ，where the sequence is generated by the fixed point iteration $p_{n+1}=\cos \left(p_{n}\right), p_{0}=0$ ．

| Iteration | $\mathbf{p}_{\mathbf{n}}$ | $\hat{\mathbf{p}}_{\mathbf{n}}$ |
| ---: | :--- | :--- |
| 0 | 0.000000000000000 | $\mathbf{0 . 6 8 5 0 7 3 3 5 7 3 2 6 0 4 5}$ |
| 1 | 1.000000000000000 | 0.728010361467617 |
| 2 | 0.540302305868140 | 0.733665164585231 |
| 3 | 0.857553215846393 | 0.736906294340474 |
| 4 | 0.654289790497779 | 0.738050421371664 |
| 5 | 0.793480358742566 | 0.738636096881655 |
| 6 | 0.701368773622757 | 0.738876582817136 |
| 7 | 0.763959682900654 | 0.738992243027034 |
| 8 | 0.722102425026708 | 0.739042511328159 |
| 9 | 0.750417761763761 | 0.739065949599941 |
| 10 | 0.731404042422510 | 0.739076383318956 |
| 11 | 0.744237354900557 | $0.739081177259563^{*}$ |
| 12 | 0.735604740436347 | $0.739083333909684^{*}$ |

Note：Bold digits are correct；$\hat{p}_{11}$ needs $p_{13}$ ，and $\hat{p}_{12}$ additionally needs $p_{14}$ ．

Accelerating Convergence
Zeros of Polynomials
Defiation，Muiller＇s Method
Polynomial Approximation

Review，
Aitken＇s $\Delta^{2}$ Method
Steffensen＇s Method

Steffensen＇s Method：Fixed－Point Iteration on Steroids
Suppose we have a fixed point iteration：

$$
p_{0}, \quad p_{1}=g\left(p_{0}\right), \quad p_{2}=g\left(p_{1}\right),
$$

Once we have $p_{0}, p_{1}$ and $p_{2}$ ，we can compute

$$
\hat{p}_{0}=p_{0}-\frac{\left(p_{1}-p_{0}\right)^{2}}{p_{2}-2 p_{1}+p_{0}}
$$

At this point we＂restart＂the fixed point iteration with $p_{0}=\hat{p}_{0}$ ， e．g．

$$
p_{3}=\hat{p}_{0}, \quad p_{4}=g\left(p_{3}\right), \quad p_{5}=g\left(p_{4}\right),
$$

and compute

$$
\hat{p}_{3}=p_{3}-\frac{\left(p_{4}-p_{3}\right)^{2}}{p_{5}-2 p_{4}+p_{3}}
$$

| Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉 | \＃4：Solutions of Equations in One Variable | －（10／58） |
| :---: | :---: | :---: |
| Accelerating Convergence <br> Zeros of Polynomials <br> Deflation，Müller＇s Method <br> Polynomial Approximation | Review <br> Aitken＇s $\Delta^{2}$ Method <br> Steffensen＇s Method |  |
| Steffensen＇s Method：Potential Breakage |  |  |

3＊If at some point $p_{2}-2 p_{1}+p_{0}=0$（which appears in the denominator），then we stop and select the current value of $p_{2}$ as our approximate answer．

Both Newton＇s and Steffensen＇s methods give quadratic convergence．In Newton＇s method we compute one function value and one derivative in each iteration．In Steffensen＇s method we have two function evaluations and a more complicated algebraic expression in each iteration，but no derivative．It looks like we got something for（almost）nothing．However，in order the guarantee quadratic convergence for Steffensen＇s method，the fixed point function $g$ must be 3 times continuously differentiable，e．g． $f \in C^{3}[a, b]$ ，（see theorem－2．14 in Burden－Faires）．Newton＇s method＂only＂requires $f \in C^{2}[a, b]$（BF Theorem－2．5）．

Below we compare a Fixed Point iteration, Newton's Method, and Steffensen's Method for solving:

$$
f(x)=x^{3}+4 x^{2}-10=0
$$

or alternately,

$$
p_{n+1}=g\left(p_{n}\right)=\sqrt{\frac{10}{p_{n}+4}}
$$

Fixed Point Iteration

| $i$ | $p_{n}$ | $g\left(p_{n}\right)$ |
| :---: | :---: | :---: |
| 0 | 1.50000 | 1.34840 |
| 1 | 1.34840 | 1.36738 |
| 2 | 1.36738 | 1.36496 |
| 3 | 1.36496 | 1.3652 |
| 4 | 1.36526 | 1.36523 |
| 5 | 1.36523 | 1.36523 |

Newton's Method

| $i$ | $x_{n}$ | $f\left(x_{n}\right)$ |
| :---: | :---: | :---: |
| 0 | 1.50000 | $1.51600 \mathrm{e}-01$ |
| 1 | 1.36495 | $-3.11226 \mathrm{e}-04$ |
| 2 | 1.36523 | $-1.35587 \mathrm{e}-09$ |

Steffensen's Method

| $i$ | $p_{n}$ | $p_{1}$ | $p_{2}$ | $p$ | $\left\|p-p_{2}\right\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1.50000 | 1.34840 | 1.36738 | 1.36527 | $3.96903 \mathrm{e}-05$ |
| 1 | 1.36527 | 1.36523 | 1.36523 | 1.36523 | $2.80531 \mathrm{e}-12$ |

Fundamentals

Theorem (The Fundamental Theorem of Algebra)
If $P(x)$ is a polynomial of degree $n \geq 1$ with real or complex coefficients, then $P(x)=0$ has at least one (possibly complex) root.

The proof is surprisingly(?) difficult and requires understanding of complex analysis... We leave it as an exercise for the motivated student!


Corollary
If $P(x)$ is a polynomial of degree $n \geq 1$ with real or complex coefficients then there exists unique constants $x_{1}, x_{2}, \ldots, x_{k}$ (possibly complex) and unique positive integers $m_{1}, m_{2}, \ldots, m_{k}$ such that $\sum_{i=1}^{k} m_{i}=n$ and

$$
P(x)=a_{n}\left(x-x_{1}\right)^{m_{1}}\left(x-x_{2}\right)^{m_{2}} \cdots\left(x-x_{k}\right)^{m_{k}}
$$

- The collection of zeros is unique.
- $m_{i}$ are the multiplicities of the individual zeros.
- A polynomial of degree $n$ has exactly $n$ zeros, counting multiplicity.

Corollary
Let $P(x)$ and $Q(x)$ be polynomials of degree at most $n$. If $x_{1}, x_{2}$, $\ldots, x_{k}$, with $k>n$ are distinct numbers with $P\left(x_{i}\right)=Q\left(x_{i}\right)$ for $i=1,2, \ldots, k$, then $P(x)=Q(x)$ for all values of $x$.

- If two polynomials of degree $n$ agree at at least $(n+1)$ points, then they must be the same.

Let

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

We want an efficient method to solve

$$
P(x)=0
$$

In 1819, William Horner developed an efficient algorithm with $n$ multiplications and $n$ additions to evaluate $P\left(x_{0}\right)$.
Technique is called Horner's Method or Synthetic Division.

Huh？！？Where did the expression come from？－Consider

$$
\begin{aligned}
P(x) & =a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
& =\left(a_{n} x^{n-1}+a_{n-1} x^{n-2}+\cdots+a_{1}\right) x+a_{0} \\
& =\left(\left(a_{n} x^{n-2}+a_{n-1} x^{n-3}+\cdots\right) x+a_{1}\right) x+a_{0} \\
& =\underbrace{(\cdots((\underbrace{a_{n} x+a_{n-1}}_{b_{n-1}}) x+\cdots) x+a_{1}) x+a_{0}}_{n-1}
\end{aligned}
$$

Horner＇s method is＂simply＂the computation of this parenthesized expression from the inside－out．．．


Hence， $\mathbf{P}(5)=529$ ，and

$$
P(x)=(x-5)\left(x^{3}+4 x^{2}+21 x+106\right)+529
$$

Similarly we get $P^{\prime}(5)=Q(5)=436$

$$
\begin{array}{c|cccc}
\hline x_{0}=5 & a_{3}=1 & a_{2}=4 & a_{1}=21 & a_{0}=106 \\
& & b_{3} x_{0}=5 & b_{2} x_{0}=45 & b_{1} x_{0}=330 \\
\hline & b_{3}=1 & b_{2}=9 & b_{1}=66 & b_{0}=436 \\
\hline
\end{array}
$$

Now，if we need to compute $P^{\prime}\left(x_{0}\right)$ we have

$$
\left.P^{\prime}(x)\right|_{x=x_{0}}=\left(x-x_{0}\right) Q^{\prime}(x)+\left.Q(x)\right|_{x=x_{0}}=Q\left(x_{0}\right)
$$

Which we can compute（again using Horner＇s method）in（ $n-1$ ） multiplications and（ $n-1$ ）additions．
Proof？We really ought to prove that Horner＇s method works．It basically boils down to lots of algebra which shows that the coefficients of $P(x)$ and $\left(x-x_{0}\right) Q(x)+b_{0}$ are the same．．．
A couple of examples may be more instructive．．．

Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉 \＃4：Solutions of Equations in One Variable

| Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉 | \＃4：Solutions of Equations in One Variable |
| :---: | :--- |
| Accelerating Convergence <br> Zeros of Polynomials <br> Deflation，Müller＇s Method <br> Polynomial Approximation | Fundamentals <br> Horner＇s Method |
| Algorithm：Horner＇s Method |  |

## Algorithm：Horner＇s Method

Input：Degree $n$ ；coefficients $a_{0}, a_{1}, \ldots, a_{n} ; x_{0}$
Output：$\quad y=P\left(x_{0}\right), z=P^{\prime}\left(x_{0}\right)$
1．Set $y=a_{n}, z=a_{n}$
2．For $j=(n-1),(n-2), \ldots, 1$

$$
\text { Set } y=x_{0} y+a_{j}, z=x_{0} z+y
$$

3．Set $y=x_{0} y+a_{0}$
4．Output $(y, z)$
5．End program

If we are solving our current favorite problem

$$
P(x)=0, \quad P(x) \text { a polynomial of degree } n
$$

and we are using Horner＇s method of computing $P\left(x_{i}\right)$ and $P^{\prime}\left(x_{i}\right)$ ， then after $N$ iterations，$x_{N}$ is an approximation to one of the roots of $P(x)=0$ ．

We have

$$
P(x)=\left(x-x_{N}\right) Q(x)+b_{0}, \quad b_{0} \approx 0
$$

Let $\hat{r}_{1}=x_{N}$ be the first root，and $Q_{1}(x)=Q(x)$ ．
We can now find a second root by applying Newton＇s method to $Q_{1}(x)$ ．

| Joe Mahaffy，〈mahaffyemath．sdsu．edu〉 | \＃4：Solutions of Equations in One Variable |
| :--- | :--- | －（25／58）

Now，the big question is＂are the approximate roots $\hat{r}_{1}, \hat{r}_{2}, \ldots$ ， $\hat{r}_{n}$ good approximations of the roots of $P(x)$ ？？？＂

Unfortunately，sometimes，no．
In each step we solve the equation to some tolerance，i．e．

$$
\left|b_{0}^{(k)}\right|<t o l
$$

Even though we may solve to a tight tolerance $\left(10^{-8}\right)$ ，the errors accumulate and the inaccuracies increase iteration－by－iteration．．．

Question：Is deflation therefore useless？？？

After some number of iterations of Newton＇s method we have

$$
Q_{1}(x)=\left(x-\hat{r}_{2}\right) Q_{2}(x)+b_{0}^{(2)}, \quad b_{0}^{(2)} \approx 0
$$

If $P(x)$ is an $n^{\text {th }}$－degree polynomial with $n$ real roots，we can apply this procedure $(n-2)$ times to find $(n-2)$ approximate zeros of $P(x): \hat{r}_{1}, \hat{r}_{2}, \ldots, \hat{r}_{n-2}$ ，and a quadratic factor $Q_{n-2}(x)$ ．

At this point we can solve $Q_{n-2}(x)=0$ using the quadratic formula，and we have $n$ roots of $P(x)=0$ ．

This procedure is called Deflation．

| Joe Mahaffy，$\langle$ mahaffy＠math．sdsu．edu〉 | \＃4：Solutions of Equations in One Variable | －（26／58） |
| ---: | :---: | :---: |
| Accelerating Convergence <br> Zeros of Polynomials <br> Deflation，Müller＇s Method <br> Polynomial Approximation | Deflation：Finding All the Zeros of a Polynomial <br> Müller＇s Method－Finding Complex Roots |  |
| Improving the Accuracy of Deflation |  |  |

The problem with deflation is that the zeros of $Q_{k}(x)$ are not good representatives of the zeros of $P(x)$ ，especially for high $k$＇s．

As $k$ increases，the quality of the root $\hat{r}_{k}$ decreases．
Maybe there is a way to get all the zeros with the same quality？
The idea is quite simple．．．in each step of deflation，instead of just accepting $\hat{r}_{k}$ as a root of $P(x)$ ，we re－run Newton＇s method on the full polynomial $P(x)$ ，with $\hat{r}_{k}$ as the starting point－a couple of Newton iterations should quickly converge to the root of the full polynomial．

## Algorithm Outline：Improved Deflation

1．Apply Newton＇s method to $P(x) \rightarrow \hat{\mathbf{r}}_{\mathbf{1}}, \mathbf{Q}_{\mathbf{1}}(\mathbf{x})$ ．
2．For $k=2,3, \ldots,(n-2)$ do $3--4$
3．Apply Newton＇s method to $\mathbf{Q}_{\mathbf{k}-\mathbf{1}} \rightarrow \hat{\mathbf{r}}_{\mathbf{k}}^{*}, \mathbf{Q}_{\mathbf{k}}^{*}(\mathbf{x})$ ．
4．Apply Newton＇s method to $\mathbf{P}(\mathbf{x})$ with $\hat{\mathbf{r}}_{\mathbf{k}}^{*}$ as the initial point $\rightarrow \hat{\mathbf{r}}_{\mathrm{k}}$
Apply Horner＇s method to $\mathbf{Q}_{\mathbf{k}-\mathbf{1}}(\mathbf{x})$ with $\mathbf{x}=\hat{\mathbf{r}}_{\mathbf{k}} \quad \rightarrow \mathbf{Q}_{\mathbf{k}}(\mathbf{x})$
5．Use the quadratic formula on $\mathbf{Q}_{\mathbf{n}-\mathbf{2}}(\mathbf{x})$ to get the two remaining roots．

Note：＂Inside＂Newton＇s method，the evaluations of polynomi－ als and their derivatives are also performed using Horner＇s method．

| Joe Mahaffy，〈mahaffyemath，sdsu．edu〉 | \＃4：Solutions of Equations in One Variable |
| :--- | :--- |

## $P_{9}^{W}(x)$ and $P_{10}^{W}(x)$

 of magnitude．Figure：［LEFT］The result of the two algorithms on the Wilkinson polynomial of degree 9 ；in this case the roots are computed so that $\left|b_{0}^{(k)}\right|<10^{-6}$ ．［RIGHT］The result of the two algorithms on the Wilkinson polynomial of degree 10；in this case the roots are computed so that $\left|b_{0}^{(k)}\right|<10^{-6}$ ．In both cases the lower line corresponds to improved deflation and we see that we get an improvement in the relative error of several orders050


I
．



Figure：［LEFT］The result of the two algorithms on the Wilkinson polynomial of degree 12 ；in this case the roots are computed so that $\left|b_{0}^{(k)}\right|<10^{-4}$ ．［RIGHT］The result of the two algorithms on the Wilkinson polynomial of degree 13；in this case the roots are computed so that $\left|b_{0}^{(k)}\right|<10^{-3}$ ．In both cases the lower line corresponds to improved deflation and we see that we get an improvement in the relative error of several orders050 of magnitude．

Joe Mahaffy，〈mahaffyomath scsu．cd
\＃4：Solutions of Equations in One Variable
（32／58）

The Wilkinson Polynomials

$$
P_{n}^{\mathrm{w}}(x)=\prod_{k=1}^{n}(x-k)
$$

have the roots $\{1,2, \ldots, n\}$ ，but provide surprisingly tough numerical root－finding problems．（Additional details in Math 543．）

In the next few slides we show the results of Deflation and Improved Deflation applied to Wilkinson polynomials of degree 9， 10,12 ，and 13.

| Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉 | \＃4：Solutions of Equations in One Variable | $-(30 / 58)$ |
| :---: | :---: | :---: |
| Accelerating Convergence <br> Zeros of Polynomials <br> Deflation，Müller＇s Method <br> Polynomial Approximation | Deflation：Finding All the Zeros of a Polynomial <br> Müller＇s Method－Finding Complex Roots |  |
| Deflation \＆Improvement | $P_{12}^{W}(x)$ and $P_{13}^{W}(x)$ |  |

## Müller＇s Method

One interesting／annoying feature of polynomials with real coefficients is that they may have complex roots，e．g． $P(x)=x^{2}+1$ has the roots $\{-i, i\}$ ．Where by definition $i=\sqrt{-1}$ ．

If the initial approximation given to Newton＇s method is real，all the successive iterates will be real．．．which means we will not find complex roots．

One way to overcome this is to start with a complex initial approximation and do all the computations in complex arithmetic．

Another solution is Müller＇s Method．．．

| Joe Mahaffy，〈mahaffymath，sdsu．edu〉 |
| ---: |
| Accelerating Convergence |
| Zeros of Polynomials |
| Deflation，Müller＇s Method |

\＃4：Solutions of Equations in One Variable

Defle Finding All the Zeros of a Polynomi

Müller＇s Method－Finding Complex Roots

Müller＇s Method－Illustration $f(x)=x^{4}-3 x^{3}-1$


Müller＇s method is an extension of the Secant method．．．
Recall that the secant method uses two points $x_{k}$ and $x_{k-1}$ and the function values in those two points $f\left(x_{k}\right)$ and $f\left(x_{k-1}\right)$ ．The zero－crossing of the linear interpolant（the secant line）is used as the next iterate $x_{k+1}$

Müller＇s method takes the next logical step：it uses three points： $x_{k}, x_{k-1}$ and $x_{k-2}$ ，the function values in those points $f\left(x_{k}\right)$ ， $f\left(x_{k-1}\right)$ and $f\left(x_{k-2}\right)$ ；a second degree polynomial fitting these three points is found，and its zero－crossing is the next iterate $x_{k+1}$

Next slide：$f(x)=x^{4}-3 x^{3}-1, x_{k-2}=1.5, x_{k-1}=2.5, x_{k}=3.5$ ．

| Joe Mahaffy，＜mahaffy＠math．sdsu．edu〉 | \＃4：Solutions of Equations in One Variable |
| ---: | :---: |
| Accelerating Convergence <br> Zeros of Polynomials <br> Deflation，Müller＇s Method <br> Polynomial Approximation | Deflation：Finding All the Zeros of a Polynomial <br> Müller＇s Method－Finding Complex Roots |
| Müller＇s Method－Fitting the Quadratic Polynomial |  |

We consider the quadratic polynomial

$$
m(x)=a\left(x-x_{k}\right)^{2}+b\left(x-x_{k}\right)+c
$$

at the three fitting points we get

$$
\begin{aligned}
f\left(x_{k-2}\right) & =a\left(x_{k-2}-x_{k}\right)^{2}+b\left(x_{k-2}-x_{k}\right)+c \\
f\left(x_{k-1}\right) & =a\left(x_{k-1}-x_{k}\right)^{2}+b\left(x_{k-1}-x_{k}\right)+c \\
f\left(x_{k}\right) & =c
\end{aligned}
$$

We can solve for $a, b$ ，and $c$ ：

$$
\begin{aligned}
& a=\frac{\left(x_{k-1}-x_{k}\right)\left(f\left(x_{k-2}\right)-f\left(x_{k}\right)\right)-\left(x_{k-2}-x_{k}\right)\left(f\left(x_{k-1}\right)-f\left(x_{k}\right)\right)}{\left(x_{k-2}-x_{k}\right)\left(x_{k-1}-x_{k}\right)\left(x_{k-2}-x_{k-1}\right)} \\
& b=\frac{\left(x_{k-2}-x_{k}\right)^{2}\left(f\left(x_{k-1}\right)-f\left(x_{k}\right)\right)-\left(x_{k-1}-x_{k}\right)^{2}\left(f\left(x_{k-2}\right)-f\left(x_{k}\right)\right)}{\left(x_{k-2}-x_{k}\right)\left(x_{k-1}-x_{k}\right)\left(x_{k-2}-x_{k-1}\right)} \\
& c=f\left(x_{k}\right)
\end{aligned}
$$

We now have a quadratic equation for $\left(x-x_{k}\right)$ which gives us two possibilities for $x_{k+1}$ ：

$$
x_{k+1}-x_{k}=\frac{-2 c}{b \pm \sqrt{b^{2}-4 a c}}
$$

In Müller＇s method we select

$$
x_{k+1}=x_{k}-\frac{2 c}{b+\operatorname{sign}(b) \sqrt{b^{2}-4 a c}}
$$

we are maximizing the（absolute）size of the denominator，hence we select the root closest to $x_{k}$ ．

Note that if $b^{2}-4 a c<0$ then we automatically get complex roots．

\＃4：Solutions of Equations in One Variable

Dintion：Finding All the Zeros of a Polynom Müller＇s Method－Finding Complex Roots
$\operatorname{ving} f(x)=0$

Let＇s recap．．．Things to remember．．
The relation between root finding $(f(x)=0)$ and fixed point $(g(x)=x)$
Key algorithms for root finding：Bisection，Secant Method，and Newton＇s Method．－Know what they are（the updates），how to start（one or two points？bracketing or not bracketing the root？）， can the method break，can breakage be fixed？Convergence properties
Also，know the mechanics of the Regula Falsi method，and understand why it can run into trouble．
Fixed point iteration：Under what conditions do FP－iteration converge for all starting values in the interval？

## Algorithm：Müller＇s Method

Input：$x_{0}, x_{1}, x_{2}$ ；tolerance tol；max iterations $N_{0}$
Output：Approximate solution $p$ ，or failure message．
1．Set $h_{1}=\left(x_{1}-x_{0}\right), h_{2}=\left(x_{2}-x_{1}\right), \delta_{1}=\left[f\left(x_{1}\right)-f\left(x_{0}\right)\right] / h_{1}$ ， $\delta_{2}=\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right] / h_{2}, d=\left(\delta_{2}-\delta_{1}\right) /\left(h_{2}+h_{1}\right), j=3$ ．
2．While $j \leq N_{0}$ do 3－－7
3．$b=\delta_{2}+h_{2} d, D=\sqrt{b^{2}-4 f\left(x_{2}\right) d}$ complex？
4．If $|b-D|<|b+D|$ then set $E=b+D$ else set $E=b-D$
5．Set $h=-2 f\left(x_{2}\right) / E, p=x_{2}+h$
6．If $|h|<t o l$ then output $p$ ；stop program
7．Set $x_{0}=x_{1}, x_{1}=x_{2}, x_{2}=p, h_{1}=\left(x_{1}-x_{0}\right)$ ， $h_{2}=\left(x_{2}-x_{1}\right), \delta_{1}=\left[f\left(x_{1}\right)-f\left(x_{0}\right)\right] / h_{1}, \delta_{2}=\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right] / h_{2}$ ， $d=\left(\delta_{2}-\delta_{1}\right) /\left(h_{2}+h_{1}\right), j=j+1$
8．output－＂Müller＇s Method failed after $N_{0}$ iterations．＂

| Accelerating Convergence <br> Zeros of Polynomials <br> Deflation，Müller＇s Method <br> Polynomial Approximation | Deflation：Finding All the Zeros of a Polynomial <br> Müller＇s Method－Finding Complex Roots |
| :---: | :---: |

Recap，continued．

Basic error analysis：order $\alpha$ ，asymptotic error constant $\lambda$ ．－ Which one has the most impact on convergence？Convergence rate for general fixed point iterations？

Multiplicity of zeros：What does it mean？How do we use this knowledge to＂help＂Newton＇s method when we＇re looking for a zero of high multiplicity？

Convergence acceleration：Aitken＇s $\Delta^{2}$－method．Steffensen＇s Method．

Zeros of polynomials：Horner＇s method，Deflation（with improvement），Müller＇s method．

Interpolation and Polynomial Approximation


Illustrated：Weierstrass Approximation Theorem


Figure：Weierstrass approximation Theorem guarantees that we（maybe with sub－ stantial work）can find a polynomial which fits into the＂tube＂around the function $f$ ，no matter how thin we make the tube．

The following theorem is the basis for polynomial approximation：

## Theorem（Weierstrass Approximation Theorem）

Suppose $f \in C[a, b]$ ．Then $\forall \epsilon>0 \exists$ a polynomial $P(x)$
$|f(x)-P(x)|<\epsilon, \forall x \in[a, b]$ ．

Note：The bound is uniform，i．e．valid for all $x$ in the interval．
Note：The theorem says nothing about how to find the polyno－ mial，or about its order．
Accelerating Convergence
Zeros of Polynomials

Solutions of Equations in One Variable Fundamentals
Moving Beyond Taylor Polynomials Lagrange Interpolating Polynomials Neville＇s Method

Candidates：the Taylor Polynomials？？？

## Natural Question

Are our old friends，the Taylor Polynomials，good candidates for polynomial interpolation？

## Answer：

No．The Taylor expansion works very hard to be accurate in the neighborhood of one point．But we want to fit data at many points（in an extended interval）．
［Next slide：The approximation is great near the expansion point $x_{0}=0$ ，but get progressively worse at we get further away from the point，even for the higher degree approximations．］

Let

$$
f(x)=\frac{1}{x}
$$

The Taylor expansion about $x_{0}=1$ is

$$
P_{n}(x)=\sum_{k=0}^{n}(-1)^{k}(x-1)^{k} .
$$

Note：$f(3)=1 / 3$ ，but $P_{n}(3)$ satisfies：

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{n}(3)$ | 1 | -1 | 3 | -5 | 11 | -21 | 43 |

The Taylor＇s series only converges $|x-1|<1$ by the ratio test（a geometric series）．Thus，not valid for $x=3$ ．

| Accelerating Convergence | Fundamentals <br> Zeros of Polynomials <br> Moving Beyond Taylor Polynomials <br> Lagrange Interpolating Polynomials |
| :---: | :--- |
| Deflation，Müller＇s Method |  |

Clearly，Taylor polynomials are not well suited for approximating a function over an extended interval．

We are going to look at the following：
－Lagrange polynomials－Neville＇s Method．［This Lecture］
－Newton＇s divided differences．
－Hermite interpolation．
－Cubic splines－Piecewise polynomial approximation．
－（Parametric curves）
－（Bézier curves－used in e．g．computer graphics）

Idea：Instead of working hard at one point，we will prescribe a number of points through which the polynomial must pass．

As warm－up we will define a function that passes through the points $\left(x_{0}, f\left(x_{0}\right)\right)$ and（ $\left.x_{1}, f\left(x_{1}\right)\right)$ ．First，lets define

$$
L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}, \quad L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}},
$$

and then define the interpolating polynomial

$$
P(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right),
$$

then $P\left(x_{0}\right)=f\left(x_{0}\right)$ ，and $P\left(x_{1}\right)=f\left(x_{1}\right)$ ．
－$P(x)$ is the unique linear polynomial passing through $\left(x_{0}, f\left(x_{0}\right)\right)$ and（ $\left.x_{1}, f\left(x_{1}\right)\right)$.

Accelerating Convergence

We are going to construct a polynomial passing through the points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right), \ldots,\left(x_{N}, f\left(x_{n}\right)\right)$.
We define $L_{n, k}(x)$, the Lagrange coefficients:
$\mathbf{L}_{n, k}(x)=\prod_{i=0,}^{n} \frac{x-x_{i}}{i \neq k}=\frac{x-x_{0}}{x_{k}-x_{0}} \cdots \frac{x-x_{k-1}}{x_{k}-x_{k-1}} \cdot \frac{x-x_{k+1}}{x_{k}-x_{k+1}} \cdots \frac{x-x_{n 1}}{x_{k}-x_{n}}$,
which have the properties

$$
L_{n, k}\left(x_{k}\right)=1 ; \quad L_{n, k}\left(x_{i}\right)=0, \forall i \neq k .
$$

Joe Mahaffy, 〈mahaffy@math.sdsu.edu〉 \#4: Solutions of Equations in One Variable — (49/58)
Accelerating Convergence
Zeros of Polynomials
Deflation, Müller's Method

Neville's Method

The $n^{\text {th }}$ Lagrange Interpolating Polynomial

We use $L_{n, k}(x), k=0, \ldots, n$ as building blocks for the Lagrange interpolating polynomial:

$$
P(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}(x),
$$

which has the property

$$
P\left(x_{i}\right)=f\left(x_{i}\right), \quad \forall i=0, \ldots, n .
$$

This is the unique polynomial passing through the points
$\left(x_{i}, f\left(x_{i}\right)\right), i=0, \ldots, n$.

Accelerating Convergence
Zeros of Polynomials
Polynomial Approximation

Fundamentals
Moving Beyond Taylor Polynomials
Lagrange Interpolating Polynomials
Neville＇s Method

Just to get a feeling for the non－constant part of the error terms in the Lagrange and Taylor approximations，we plot those parts on the interval $[0,4]$ with interpolation points $x_{i}=i, i=0,1, \ldots, 4$ ：


Figure：$[$ LEFT］The non－constant error terms for the Lagrange interpolation oscillates in the interval $[-4,4]$ （and takes the value zero at the node point $x_{k}$ ），and［RIGHT］the non－constant error term for the Taylor extrapolation grows in the interval $[0,1024]$ ．

Joe Mahaffy，〈mahaffy＠math．sdsu．edu
\＃4：Solutions of Equations in One Variable
Accelerating Convergence
Zeros of Polynomials
Deflation，Müller＇s Method

$$
\begin{aligned}
& \text { Fundamentals } \\
& \text { Moving Beyono }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Moving Beyond Taylor Polynomials } \\
& \hline
\end{aligned}
$$

Lagrange Interpolating Polynomials

$$
\begin{aligned}
& \text { Lagrange interpolf } \\
& \text { Neville's Method }
\end{aligned}
$$

Applying（estimating）the error term is difficult．
The degree of the polynomial needed for some desired accuracy is not known until after cumbersome calculations－checking the error term．

If we want to increase the degree of the polynomial（to e．g． $n+1$ ）the previous calculations are not of any help．．．

Building block for a fix：Let $f$ be a function defined at $x_{0}, \ldots, x_{n}$ ， and suppose that $m_{1}, m_{2}, \ldots, m_{k}$ are $k(<n)$ distinct integers， with $0 \leq m_{i} \leq n \forall i$ ．The Lagrange polynomial that agrees with $f(x)$ the $k$ points $x_{m_{1}}, x_{m_{2}}, \ldots, x_{m_{k}}$ ，is denoted $P_{m_{1}, m_{2}, \ldots, m_{k}}(x)$ ．
Note：$\left\{m_{1}, m_{2}, \ldots, m_{k}\right\} \subset\{0,1, \ldots, n\}$ ．


| $x_{0}$ | $P_{0}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $x_{1}$ | $P_{1}$ | $P_{0,1}$ |  |  |  |
| $x_{2}$ | $P_{2}$ | $P_{1,2}$ | $P_{0,1,2}$ |  |  |
| $x_{3}$ | $P_{3}$ | $P_{2,3}$ | $P_{1,2,3}$ | $P_{0,1,2,3}$ |  |
| $x_{4}$ | $P_{4}$ | $P_{3,4}$ | $P_{2,3,4}$ | $P_{1,2,3,4}$ | $P_{0,1,2,3,4}$ |

## Theorem

Let $f$ be defined at $x_{0}, x_{1}, \ldots, x_{k}$ ，and $x_{i}$ and $x_{j}$ be two distinct points in this set，then

$$
P(x)=\frac{\left(x-x_{j}\right) P_{0, \ldots, j-1, j+1, \ldots, k}(x)-\left(x-x_{i}\right) P_{0, \ldots, i-1, i+1, \ldots, k}(x)}{x_{i}-x_{j}}
$$

is the $k^{\text {th }}$ Lagrange polynomial that interpolates $f$ at the $k+1$ points $x_{0}, \ldots, x_{k}$

## Neville's Method

The notation in the previous table gets cumbersome... We introduce the notation $Q_{\text {Last, Degree }}=P_{\text {Last-Degree }, \ldots, \text { Last }}$, the table becomes:

| $x_{0}$ | $Q_{0,0}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $x_{1}$ | $Q_{1,0}$ | $Q_{1,1}$ |  |  |  |
| $x_{2}$ | $Q_{2,0}$ | $Q_{2,1}$ | $Q_{2,2}$ |  |  |
| $x_{3}$ | $Q_{3,0}$ | $Q_{3,1}$ | $Q_{3,2}$ | $Q_{3,3}$ |  |
| $x_{4}$ | $Q_{4,0}$ | $Q_{4,1}$ | $Q_{4,2}$ | $Q_{4,3}$ | $Q_{4,4}$ |

Compare with the old notation:

| $x_{0}$ | $P_{0}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $x_{1}$ | $P_{1}$ | $P_{0,1}$ |  |  |  |
| $x_{2}$ | $P_{2}$ | $P_{1,2}$ | $P_{0,1,2}$ |  |  |
| $x_{3}$ | $P_{3}$ | $P_{2,3}$ | $P_{1,2,3}$ | $P_{0,1,2,3}$ |  |
| $x_{4}$ | $P_{4}$ | $P_{3,4}$ | $P_{2,3,4}$ | $P_{1,2,3,4}$ | $P_{0,1,2,3,4}$ |

## Algorithm: Neville's Method

To evaluate the polynomial that interpolates the $n+1$ points $\left(x_{i}, f\left(x_{i}\right)\right), i=0, \ldots, n$ at the point $x$ :

1. Initialize $Q_{i, 0}=f\left(x_{i}\right)$.
2. 

FOR $i=1: n$ FOR $j=1: i$

$$
Q_{i, j}=\frac{\left(x-x_{i-j}\right) Q_{i, j-1}-\left(x-x_{i}\right) Q_{i-1, j-1}}{x_{i}-x_{i-j}}
$$

END
END
3. Output the $Q$-table.

