Numerical Analysis and Computing

Lecture Notes \＃02－Calculus Review；Computer Artihmetic and Finite Precision；Algorithms and Convergence；

Solutions of Equations of One Variable

Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉

Department of Mathematics
Dynamical Systems Group
computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy

Spring
Joe Mahaffy，＜mahaffy＠math．sdsu．edu〉
Calculus Review Computer Arithmetic \＆Finite Precision Algorithms
Solutions of Equations of One Variable

pring 2010
5050
Joe Mahaffy，〈mahaffyemath．sdsu．edu〉 Lecture Notes \＃02－（1／63）

Computer Arithmetic \＆Finite Precision
Solutions of Equations of One Variable

Limits，Continuity，and Convergence
Differentiability，Rolle＇s，and the Mean Value Theorem Extreme Value，Intermediate Value，and Taylor＇s Theorem

It＇s a good warm－up for our brains！
When developing numerical schemes we will use theorems from calculus to guarantee that our algorithms make sense．

If the theory is sound，when our programs fail we look for bugs in the code！
（1）Calculus Review
－Limits，Continuity，and Convergence
－Differentiability，Rolle＇s，and the Mean Value Theorem
－Extreme Value，Intermediate Value，and Taylor＇s Theorem

（2）
Computer Arithmetic \＆Finite Precision
－Binary Representation，IEEE 754－1985
－Something＇s Missing．
－Roundoff and Truncation，Errors，Digits
－Cancellation

Algorithms
－Algorithms，Pseudo－Code
－Fundamental Concepts

Solutions of Equations of One Variable
－$f(x)=0$ ，＂Root Finding＂
－The Bisection Method
－When do we stop？！

Joe Maharfy，（mahaf fyenath sdsus ．edu）	Lecture Notes \＃02－（2／63）
	Limits，Continuity，and Convergence Differentiability，Rolle＇s，and the Mean Value Theorem Extreme Value，Intermediate Value，and Taylor＇s Theore
Background Material－A Crash C	se in Calculus

Key concepts from Calculus

－Limits
－Continuity
－Convergence
－Differentiability
－Rolle＇s Theorem
－Mean Value Theorem
－Extreme Value Theorem
－Intermediate Value Theorem
－Taylor＇s Theorem

Definition（Limit）

A function f defined on a set X of real numbers $X \subset \mathbb{R}$ has the limit L at x_{0} ，written

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

if given any real number $\epsilon>0(\forall \epsilon>0)$ ，there exists a real number $\delta>0$ $(\exists \delta>0)$ such that $|f(x)-L|<\epsilon$ ，whenever $x \in X$ and $0<\left|x-x_{0}\right|<\delta$ ．

Definition（Continuity（at a point））

Let f be a function defined on a set X of real numbers，and $x_{0} \in X$ ． Then f is continuous at x_{0} if

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

Limits，Continuity，and Convergence Differentiability，Rolle＇s，and the Mean Value Theorem Extreme Value，Intermediate Value，and Taylor＇s Theoren

Calculus Review
Computer Arithmetic \＆Finite Precision Solutions of Equations of One Variable

Example：Continuity at x_{0}

Here we see how the limit $x \rightarrow x_{0}$（where $x_{0}=0.5$ ）exists for the function $f(x)=x+\frac{1}{2} \sin (2 \pi x)$ ．
has a jump discontinuity at $x_{0}=0.5$ ．

The function

$$
f(x)= \begin{cases}1 & x=0.5 \\ 0 & x \neq 0.5\end{cases}
$$

The limit exists，but
has a discontinuity at $x_{0}=0.5$ ．

$$
\lim _{x \rightarrow 0.5} f(x)=0 \neq 1
$$

oe Maha fiy，（mahaffyenath．sdesp．
Calculus Review

Computer Arithmetic \& Finite Precision Solutions of Equations of One Variable

Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

Limits, Continuity, and Convergence ifferentiability, Rolle's, and the Mean Value Theorem xtreme Value, Intermediate Value, and Taylor's Theorem

Illustration: Convergence of a Complex Sequence

Definition (Continuity (in an interval))

The function f is continuous on the set $X(f \in C(X))$ if it is continuous at each point x in X.

Definition (Convergence of a sequence)

Let $\underline{\mathbf{x}}=\left\{x_{n}\right\}_{n=1}^{\infty}$ be an infinite sequence of real (or complex numbers). The sequence \underline{x} converges to x (has the limit x) if $\forall \epsilon>0, \exists N(\epsilon) \in \mathbb{Z}^{+}:\left|x_{n}-x\right|<\epsilon \forall n>N(\epsilon)$. The notation

$$
\lim _{n \rightarrow \infty} x_{n}=x
$$

means that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x.
Joe Mahaffy, \langle mahaffy@math. sdsu.edu \quad Calculus Review \quad - (9/63)

Calculus Review
Computer Arithmetic \& Finite Precision
Algorithms
Solutions of Equations of One Variable

Limits, Continuity, and Convergence
Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theoren

Theorem

If f is a function defined on a set X of real numbers and $x_{0} \in X$, the the following statements are equivalent:
(a) f is continuous at x_{0}
(b) If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is any sequence in X converging to x_{0}, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.

Definition (Differentiability (at a point))

Let f be a function defined on an open interval containing $x_{0}\left(a<x_{0}<b\right)$. f is differentiable at x_{0} if

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \quad \text { exists. }
$$

If the limit exists, $f^{\prime}\left(x_{0}\right)$ is the derivative at x_{0}

Definition (Differentiability (in an interval))

If $f^{\prime}\left(x_{0}\right)$ exists $\forall x_{0} \in X$, then f is differentiable on X

A sequence in $\underline{\mathbf{z}}=\left\{z_{k}\right\}_{k=1}^{\infty}$ converges to $z_{0} \in \mathbb{C}$ (the black dot) if for any ϵ (the radius of the circle), there is a value N (which
depends on ϵ) so that the "tail" of the sequence $\underline{\mathbf{z}}_{t}=\left\{z_{k}\right\}_{k=N}^{\infty}$ is inside the circle.

Here we see that the limit

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists - and approaches the slope / derivative at $x_{0}, f^{\prime}\left(x_{0}\right)$.

Computer Arithmetic \＆Finite Precision Solutions of Equations of One Variable

Theorem（Differentiability \Rightarrow Continuity）
If f is differentiable at x_{0} ，then f is continuous at x_{0} ．

Theorem（Rolle＇s Theorem Wiki－Link ）

Suppose $f \in C[a, b]$ and that f is differentiable on (a, b) ．If $f(a)=f(b)$ ， then $\exists c \in(a, b): f^{\prime}(c)=0$ ．

Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉 Calculus Review

Limits，Continuity，and Convergence
Differentiability，Rolle＇s，and the Mean Value Theorem Extreme Value，Intermediate Value，and Taylor＇s Theorem

Computer Arithmetic \＆Falculus Review Solutions of Equations of One Variable

Theorem（Mean Value Theorem wik－Link ）
If $f \in C[a, b]$ and f is differentiable on (a, b) ，then $\exists c \in(a, b)$ ：
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ ．

Theorem（Extreme Value Theorem wiki－ink ）

If $f \in C[a, b]$ then $\exists c_{1}, c_{2} \in[a, b]: f\left(c_{1}\right) \leq f(x) \leq f\left(c_{2}\right)$
$\forall x \in[a, b]$ ．If f is differentiable on (a, b) then the numbers c_{1}, c_{2} occur either at the endpoints of $[a, b]$ or where $f^{\prime}(x)=0$ ．

Theorem（Intermediate Value Theorem Wiki－Link ）
if $f \in C[a, b]$ and K is any number between $f(a)$ and $f(b)$ ，then there exists a number c in (a, b) for which $f(c)=K$ ．

Computer Arithmetic \＆Fanitulus Reveriew Solutions of Equations of One Variable

Colty Rols Extreme Value，Intermediate Value，and Taylor＇s Theorem

Illustration：Taylor＇s Theorem

Theorem（Taylor＇s Theorem Wiki－Link ）

Suppose $f \in C^{n}[a, b], f^{(n+1)} \exists$ on $[a, b]$ ，and $x_{0} \in[a, b]$ ．Then $\forall x \in(a, b), \exists \xi(x) \in\left(x_{0}, x\right)$ with $f(x)=P_{n}(x)+R_{n}(x)$ where
$P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}, \quad R_{n}(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)^{(n+1)}$.
$P_{n}(x)$ is called the Taylor polynomial of degree n ，and $R_{n}(x)$ is the remainder term（truncation error）．

This theorem is extremely important for numerical analysis； Taylor expansion is a fundamental step in the derivation of many of the algorithms we see in this class（and in Math 693ab）．

Joe Mahaffy，\langle 至ahaffy＠math．sdsu．edu〉
Calculus Review
Computer Arithmetic \＆Finite Precision
Algorithms
Solutions of Equations of One Variable

Calculus Review
SDSO

Calculus Review Solutions of Equations of One Variable

Differentiability，Rolle＇s，and the Mean Value Theorem Extreme Value，Intermediate Value，and Taylor＇s Theorem

Taylor Expansions－Maple
－A Taylor polynomial of degree n requires all derivatives up to order n and degree $n+1$ for the Remainder．
－In general，derivatives may be complicated expressions．
－Maple computes derivatives accurately and efficiently－dif－ ferentiation uses the command $\operatorname{diff}(f(\mathbf{x}), \mathbf{x})$ ；
－Maple has a routine for Taylor series expansions－finding the Taylor＇s series uses the command $\operatorname{taylor}(\mathbf{f}(\mathbf{x}), \mathbf{x}=\mathbf{x 0} \mathbf{n})$ ；， meaning the Taylor series expansion about $x=x_{0}$ using n terms in the expansion．
－A Maple worksheet is available with many of these basic com－ mands through my webpage for this class．

$$
P_{13}(x)=\underbrace{\underbrace{x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}}_{P_{5}(x)}-\frac{1}{7!} x^{7}+\frac{1}{9!} x^{9}-\frac{1}{11!} x^{11}+\frac{1}{13!} x^{13}}_{P_{9}(x)}
$$

Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉 Calculus Review \begin{tabular}{c}
Calculus Review

\hline Computer Arithmetic \＆Finite Precision

Algorithms

Limits，Continuity，and Convergence

Differentiability，Rolle＇s，and the Mean Value Theorem

Extreme Value，Intermediate Value，and Taylor＇s Theorem
\end{tabular}

－A Taylor polynomial of degree n requires all derivatives up to order n ，and order $n+1$ for the remainder．
－Derivatives may be［more］complicated expression［than the original function］．
－Matlab can compute derivatives for you：

Matlab：Symbolic Computations

syms x
>> diff(sin(2*x))
>> diff(sin(2*x),3)
>> taylor $(\exp (x), 5)$
>> taylor $(\exp (x), 5,1)$

| Joe Mahaffy，\langle mahaffy＠math．sdsu．edu〉 | Calculus Review |
| ---: | :--- | :--- |
| Calculus Review | Binary Representation，IEEE 754－1985
 Computer Arithmetic \＆Finite Precision
 Algorithms
 Roundhoff and Missung．．．
 Cancellation |
| Solutions of Equations of One Variable | | of terms．This is shown on the Maple worksheet also，and the code is accessible through my webpage．

－Most versions of MatLab have a symbolic package that in－ cludes Maple，so this symbolic package can help with deriva－ tives．
－Often easier to play to the strengths of each language and let Maple find the Taylor coefficients to employ in the MatLab code．
－MatLab provides relatively efficient numerical programs that are similar and based on C Programming．
－A MatLab code is provided to show the convergence of the Taylor series to the cosine function with increasing numbers

Computer Arithmetic and Finite Precision

Computers use a finite number of bits（ 0 ＇s and 1 ＇s）to represent numbers．

For instance，an 8－bit unsigned integer（a．k．a a＂char＂）is stored：

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
0	1	0	0	1	1	0	1

Here， $2^{6}+2^{3}+2^{2}+2^{0}=64+8+4+1=77$ ，which represents the upper－case character＂ M ＂（US－ASCII）．
inary Representation，IEEE 754－1985
omething＇s Missing
oundoff and Truncation，Errors，Digits Cancellation

Burden－Faires＇Description is not complete

As described in previous slide，we cannot represent zero！
There are some special signals in IEEE－754－1985：

Type	S（1 bit）	C（11 bits）	M（52 bits）
signaling NaN	u	$2047(\max)$	$.0 \mathrm{uuuuu}-\mathrm{u}($ with at least one 1 bit $)$
quiet NaN	u	$2047(\max)$.1 uuuuu－u
negative infinity	1	$2047(\max)$	$.000000-0$
positive infinity	0	$2047(\max)$	$.000000-0$
negative zero	1	0	$.000000-0$
positive zero	0	0	$.000000-0$

From：http：／／www．freesoft．org／CIE／RFC／1832／32．htm

Binary Representation，IEEE 754－1985 Something＇s Missing
Roundoff and Truncation，Errors，Digits Cancellation

Examples：Finite Precision

$$
r=(-1)^{s} 2^{c-1023}(1+f), \quad c=\sum_{k=0}^{10} c_{k} 2^{k}, \quad m=\sum_{k=0}^{51} \frac{m_{k}}{2^{52-k}}
$$

Example \＃1： 3.0
010000000000100

$$
r_{1}=(-1)^{0} \cdot 2^{2^{10}-1023} \cdot\left(1+\frac{1}{2}\right)=1 \cdot 2^{1} \cdot \frac{3}{2}=3.0
$$

Example \＃2：The Smallest Positive Real Number

001

$$
r_{2}=(-1)^{0} \cdot 2^{0-1023} \cdot\left(1+2^{-52}\right)=\left(1+2^{-52}\right) \cdot 2^{-1023} \cdot 1 \approx 10^{-308}
$$

Something is Missing－Gaps in the Representation

There are gaps in the floating－point representation！ Given the representation

001
for the value $\frac{2^{-1023}}{2^{52}}$ ．
The next larger floating－point value is
00010
i．e．the value $\frac{2^{-1023}}{2^{51}}$ ．
The difference between these two values is $\frac{2^{-1023}}{2^{52}}=2^{-1075}$
Any number in the interval $\left(\frac{2^{-1023}}{2^{52}}, \frac{2^{-1023}}{2^{51}}\right)$ is not
representable！
Computer Arithmetic \＆Finite Precision

Somery Representation
Roundoff and Truncation，Errors，Digit Cancellation

At the other extreme，the difference between
01111111111011
and the previous value
011111111110110
is $\frac{2^{1023}}{2^{52}}=2^{971} \approx 1.99 \cdot 10^{292}$.
That＇s a＂fairly significant＂gap！！！
The number of atoms in the observable universe can be estimated to be no more than $\sim 10^{80}$ ．

Any real number can be written in the form

$$
\pm 0 . d_{1} d_{2} \cdots d_{\infty} \cdot 10^{n}
$$

given infinite patience and storage space．
We can obtain the floating－point representation $f l(r)$ in two ways：
（1）Truncating（chopping）－just keep the first k digits．
（2）Rounding－if $d_{k+1} \geq 5$ then add 1 to d_{k} ．Truncate．

Examples

$$
f 1_{t, 5}(\pi)=0.31415 \cdot 10^{1}, \quad f 1_{r, 5}(\pi)=0.31416 \cdot 10^{1}
$$

In both cases，the error introduced is called the roundoff error．

Joe Mahaffy，＜mahaffy＠math．sdsu．edu〉	Computer Arithmetic \＆Finite Precision	－（34／63）
Calculus Review Computer Arithmetic \＆Finite Precision Algorithms Solutions of Equations of One Variable	Binary Representation，IEEE 754－1985 Something＇s Missing．． Roundoff and Truncation，Errors，Digits Cancellation	
Sources of Numerical Error	Important！！	

1）Representation－Roundoff．
2）Cancellation－Consider：

$$
\begin{aligned}
& 0.12345678012345 \cdot 10^{1} \\
- & 0.12345678012344 \cdot 10^{1} \\
\hline= & 0.10000000000000 \cdot 10^{-13}
\end{aligned}
$$

this value has（at most） $\mathbf{1}$ significant digit！！！
If you assume a＂canceled value＂has more significant bits（the computer will happily give you some numbers）－I don＇t want you programming the autopilot for any airlines！！！

Rounding 5-digit arithmetic

$$
\begin{gathered}
(96384+26.678)-96410= \\
(96384+00027)-96410= \\
96411-96410=1.0000
\end{gathered}
$$

Truncating 5-digit arithmetic

$$
\begin{gathered}
(96384+26.678)-96410= \\
(96384+00026)-96410= \\
96410-96410=0.0000
\end{gathered}
$$

Rearrangement changes the result

$$
(96384-96410)+26.678=-26.000+26.678=0.67800
$$

Numerically, order of computation matters! (This is a HARD problem)

Computer Arithmetic \& Finite Precision

Matlab code：Loss of Significant Digits

clear

$\mathrm{x}(1)=1-1 / \exp (1)$ ；
$\mathrm{s}(1)=1$ ；
$\mathrm{f}(1)=1$ ；
for $\mathrm{i}=2: 21$
$x(i)=1-(i-1) * x(i-1) ;$
s（i）$=1 / \mathrm{i}$ ；
$\mathrm{f}(\mathrm{i})=(\mathrm{i}-1) * \mathrm{f}(\mathrm{i}-1)$ ；
end
n＝0：20；
z＝［n；x；s；f］；
fprintf（1，＇$\backslash \mathrm{n} \backslash \mathrm{n} \mathrm{n} x(\mathrm{n}) 1 /(\mathrm{n}+1) \mathrm{n}!\backslash \mathrm{n} \backslash \mathrm{n}$＇）
fprintf（1，＇\％2．0f \％13．8f \％10．8f \％10．3g\n＇，z）

Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉
Computer Arithmetic \＆Finite Precision
－（41／63）

$$
\begin{array}{r}
\text { Calculus Review } \\
\text { Computer Arithmetic \& Finite Precision } \\
\text { Alsorithms }
\end{array}
$$

Algorithms，Pseudo－Code

Fundamental Concepts
Solutions of Equations of One Variable

Definition（Algorithm）

An algorithm is a procedure that describes，in an unambiguous manner，a finite sequence of steps to be performed in a specific order．

In this class，the objective of an algorithm is to implement a procedure to solve a problem or approximate a solution to a problem．

Most homes have a collection of algorithms in printed form－we tend to call them＂recipes．＂

There is a collection of algorithms＂out there＂called Numerical Recipes，google for it！

Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉 Algorithms and Convergence

Calculus Review
Computer Arithmetic \＆Finite Precision
Algorithms
Solutions of Equations of One Variable
Algorithms，Pseudo－Code
Fundamental Concepts
？

Definition（Stability）

An algorithm is said to be stable if small changes in the input， generates small changes in the output．

At some point we need to quantify what＂small＂means！
If an algorithm is stable for a certain range of initial data，then is it said to be conditionally stable．

Stability issues are discussed in great detail in Math 543.

Suppose $E_{0}>0$ denotes the initial error，and E_{n} represents the error after n operations．

If $E_{n} \approx \mathcal{C} E_{0} \cdot n$（for a constant \mathcal{C} which is independent of n ），then the growth is linear．
If $E_{n} \approx \mathcal{C}^{n} E_{0}, \mathcal{C}>1$ ，then the growth is exponential－in this case the error will dominate very fast（undesirable scenario）．

Linear error growth is usually unavoidable，and in the case where \mathcal{C} and E_{0} are small the results are generally acceptable．－Stable algorithm．
Exponential error growth is unacceptable．Regardless of the size of E_{0} the error grows rapidly．－Unstable algorithm．

Joe Mahaffy，〈mahaffyemath．sdsu．edu〉	Algorithms and Convergence	－（45／63）
Calculus Review Computer Arithmetic \＆Finite Precision Algorthms Solutions of Equations of One Variable	Algorithms，Pseudo－Code Fundamental Concepts	
Example BF－1．3．3		2 of 2

Now，consider what happens in 5－digit rounding arithmetic．．．

$$
p_{0}^{*}=1.0000, \quad p_{1}^{*}=0.33333
$$

which modifies

$$
c_{1}^{*}=1.0000, \quad c_{2}^{*}=-0.12500 \cdot 10^{-5}
$$

The generated sequence is

$$
p_{n}^{*}=1.0000(0.33333)^{n}-\underbrace{0.12500 \cdot 10^{-5}(3.0000)^{n}}_{\text {Exponential Growth }}
$$

p_{n}^{*} quickly becomes a very poor approximation to p_{n} due to the exponential growth of the initial roundoff error．

The recursive equation

$$
p_{n}=\frac{10}{3} p_{n-1}-p_{n-2}, \quad n=2,3, \ldots, \infty
$$

has the exact solution

$$
p_{n}=c_{1}\left(\frac{1}{3}\right)^{n}+c_{2} 3^{n}
$$

for any constants c_{1} and c_{2} ．（Determined by starting values．）
In particular，if $p_{0}=1$ and $p_{1}=\frac{1}{3}$ ，we get $c_{1}=1$ and $c_{2}=0$ ，so $p_{n}=\left(\frac{1}{3}\right)^{n}$ for all n ．

Now，consider what happens in 5－digit rounding arithmetic．．．

Joe Mahaffy，\langle mahaffy＠math．sdsu．edu〉	Algorithms and Convergence
Calculus Review Computer Arithmetic \＆Finite Precision Algorithms	Algorithms，Pseudo－Code Fundamental Concepts
Solutions of Equations of One Variable	

The effects of roundoff error can be reduced by using higher－order－digit arithmetic such as the double or multiple－precision arithmetic available on most computers．

Disadvantages in using double precision arithmetic are that it takes more computation time and the growth of the roundoff error is not eliminated but only postponed．

Sometimes，but not always，it is possible to reduce the growth of the roundoff error by restructuring the calculations．

Definition（Rate of Convergence）

Suppose the sequence $\underline{\beta}=\left\{\beta_{n}\right\}_{n=1}^{\infty}$ converges to zero，and $\underline{\alpha}=\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to a number α ．

If $\exists K>0$ ：$\left|\alpha_{n}-\alpha\right|<K \beta_{n}$ ，for n large enough，then we say that $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to α with a Rate of Convergence $\mathcal{O}\left(\beta_{n}\right)$（＂Big Oh of $\beta_{n}{ }^{\prime \prime}$ ）．

We write

$$
\alpha_{n}=\alpha+\mathcal{O}\left(\beta_{n}\right)
$$

Note：The sequence $\underline{\beta}=\left\{\beta_{n}\right\}_{n=1}^{\infty}$ is usually chosen to be

$$
\beta_{n}=\frac{1}{n^{p}}
$$

for some positive value of p ．

Algorithms and Convergence

Algorithms，Pseudo－Code
Fundamental Concepts

Examples：Rate of Convergence

Example \＃2：Consider the sequence（as $n \rightarrow \infty$ ）

$$
\alpha_{n}=\sin \left(\frac{1}{n}\right)-\frac{1}{n}
$$

We Taylor expand $\sin (x)$ about $x_{0}=0$ ：

$$
\sin \left(\frac{1}{n}\right) \sim \frac{1}{n}-\frac{1}{6 n^{3}}+\mathcal{O}\left(\frac{1}{n^{5}}\right)
$$

Hence

$$
\left|\alpha_{n}\right|=\left|\frac{1}{6 n^{3}}+\mathcal{O}\left(\frac{1}{n^{5}}\right)\right|
$$

It follows that

$$
\alpha_{n}=\mathbf{0}+\mathcal{O}\left(\frac{1}{n^{3}}\right)
$$

Note：

$$
\mathcal{O}\left(\frac{1}{n^{3}}\right)+\mathcal{O}\left(\frac{1}{n^{5}}\right)=\mathcal{O}\left(\frac{1}{n^{3}}\right), \text { since } \frac{1}{n^{5}} \ll \frac{1}{n^{3}}, \quad \text { as } n \rightarrow \infty \quad \text { SOSO }
$$

Example \＃2－b：Consider the function $\alpha(h)$（as $h \rightarrow 0$ ）

$$
\alpha(h)=\sin (h)-h
$$

We Taylor expand $\sin (x)$ about $x_{0}=0$ ：

$$
\sin (h) \sim h-\frac{h^{3}}{6}+\mathcal{O}\left(h^{5}\right)
$$

Hence

$$
|\alpha(h)|=\left|\frac{h^{3}}{6}+\mathcal{O}\left(h^{5}\right)\right|
$$

It follows that

$$
\lim _{h \rightarrow 0} \alpha(h)=\mathbf{0}+\mathcal{O}\left(h^{3}\right)
$$

Note：
$\mathcal{O}\left(h^{3}\right)+\mathcal{O}\left(h^{5}\right)=\mathcal{O}\left(h^{3}\right), \quad$ since $\quad h^{5} \ll h^{3}, \quad$ as $\quad h \rightarrow 0 \quad$ SDSo
Algorithms and Convergence

Our new favorite problem：

$$
f(x)=0
$$

| Joe Mahaffy，＜mahaffy＠math．sdsu．edu〉 | Solutions of Equations of One Variable |
| :--- | :--- | －（54／63）

Suppose f is continuous on the interval（ a_{0}, b_{0} ）and $f\left(a_{0}\right) \cdot f\left(b_{0}\right)<0$－This means the function changes sign at least once in the interval．

The intermediate value theorem guarantees the existence of $c \in\left(a_{0}, b_{0}\right)$ such that $f(c)=0$ ．

Without loss of generality（just consider the function $-f(x)$ ），we can assume（for now）that $f\left(a_{0}\right)<0$ ．
We will construct a sequence of intervals containing the root c ：

$$
\left(a_{0}, b_{0}\right) \supset\left(a_{1}, b_{1}\right) \supset \cdots \supset\left(a_{n-1}, b_{n-1}\right) \supset\left(a_{n}, b_{n}\right) \ni c
$$

The sub－intervals are determined recursively：
Given $\left(a_{k-1}, b_{k-1}\right)$ ，let $m_{k}=\frac{a_{k-1}+b_{k-1}}{2}$ be the mid－point． If $f\left(m_{k}\right)=0$ ，we＇re done，otherwise

$$
\left(a_{k}, b_{k}\right)= \begin{cases}\left(m_{k}, b_{k-1}\right) & \text { if } f\left(m_{k}\right)<0 \\ \left(a_{k-1}, m_{k}\right) & \text { if } f\left(m_{k}\right)>0\end{cases}
$$

This construction guarantees that $f\left(a_{k}\right) \cdot f\left(b_{k}\right)<0$ and $c \in\left(a_{k}, b_{k}\right)$ ．

Joe Mahaffy，＜mahaffy＠math，sdsu．edu〉	Solutions of Equations of One Variable

Convergence is slow：
At each step we gain one binary digit in accuracy．Since $10^{-1} \approx 2^{-3.3}$ ，it takes on average 3.3 iterations to gain one decimal digit of accuracy．

Note：The rate of convergence is completely independent of the function f ．

We are only using the sign of f at the endpoints of the interval（s） to make decisions on how to update．－By making more effective use of the values of f we can attain significantly faster convergence．
First an example．．．

Computer Arithmetic \＆Finite Precision
Solutions of Equations of One Variable

Joe Mahaffy，〈mahaffy＠math．sdsu．edu

Solutions of Equations of One Variable

```
l}\begin{array}{l}{f(x)=0, "Root Finding"}\\{\mathrm{ The Bisection Method}}
```

When do we stop？！

Stopping Criteria

When do we stop？
We can（1）keep going until successive iterates are close：

$$
\left|m_{k+1}-m_{k}\right|<\epsilon
$$

or（2）close in relative terms

$$
\frac{\left|m_{k+1}-m_{k}\right|}{\left|m_{k+1}\right|}<\epsilon
$$

or（3）the function value is small enough

$$
\left|f\left(m_{k+1}\right)\right|<\epsilon
$$

No choice is perfect．In general，where no additional information about f is known，the second criterion is the preferred one（since it comes the closest to testing the relative error）．

Matlab code：The Bisection Method

\％WARNING：This example ASSUMES that $f(a)<0<f(b) .$.
$x=1.5: 0.001: 2$ ；
$\mathrm{f}=$ inline（＇（x／2）．＾2－sin（x）＇，＇x＇）；
$\mathrm{a}=1.5$ ；
b $=2.0$ ，
for $k=0: 9$
plot（x，f（x），＇k－＇，＇linewidth＇，2）
axis（［1．45 2．05－0．5 ．15］）
grid on
hold on
plot（［a b］，f（［a b］），＇ko＇，＇linewidth＇，5）
hold off
$\mathrm{m}=(\mathrm{a}+\mathrm{b}) / 2$
if $(\mathrm{f}(\mathrm{m})<0$ ）
$a=m$
else $b=m$
end
pause print（＇－depsc＇，［＇bisec＇int2str（k）＇．eps＇］，＇－f1＇）；
end

Joe Mahaffy，〈mahaffy＠math．sdsu．edu〉
Solutions of Equations of One Variable

