- 1. a. Growth constant r = 0.09692. The general solution is given by $P_n = 227(1.09692)^n$, where n is in decades after 1980. Populations in 2000 and 2020 are 273.1 and 328.6 million, respectively.
- b. Growth constant r = 0.2319. Populations in 2000 and 2020 are 104.7 and 158.9 million, respectively. Mexico's population would double in 3.32 decades or 33.2 years.
- c. The population of Mexico will first exceed that of U. S. in 103 years with Mexico having a population of 591.2 million and U. S. having a population of 588.6 million.
- 2. a. If $P_0 = 2000$, then $P_1 = -500$, $P_2 = -1437.5$, and $P_3 = -5817.4$. The equilibria are $P_e = 0$ and 1000.
- b. The graph of the updating function, f(P), with the identity map, $P_{n+1} = P_n$, is shown below. The P_n -intercepts are 0 and 1800. The vertex of the parabola occurs at (900, 1012.5).

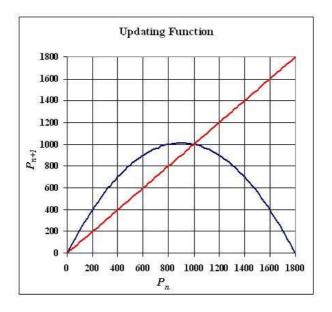


Figure 1: The identity map and the updating function intersect at the equilibria.

- c. The derivative of f(P) is f'(p) = 2.25 0.0025P. At the equilibrium, $P_e = 0$, f(0) = 2.25, which implies that this equilibrium is unstable with solutions monotonically growing away. At the equilibrium, $P_e = 1000$, f(1000) = -0.25, which implies that this equilibrium is stable with solutions oscillating toward the equilibrium.
- 3. a. With $P_0 = 500$, this discrete logistic model gives $P_1 = 516$, $P_2 = 532$, and $P_3 = 548$.
 - b. The updating function f(p) has intercepts at

$$p = \frac{1}{2} \left(11000 \pm \sqrt{(11000)^2 - 360000} \right) \simeq 8.188, 10992.$$

The vertex occurs at (5500, 3016). The equilibria are $P_e = 100$ or 900.

c. The derivative of f(P) is f'(p) = 1.1 - 0.0002P. At the equilibrium, $P_e = 100$, f(100) = 1.08, which implies that this equilibrium is unstable with solutions monotonically growing away. At the equilibrium, $P_e = 900$, f(900) = 0.92, which implies that this equilibrium is stable with solutions monotonically approaching the equilibrium.

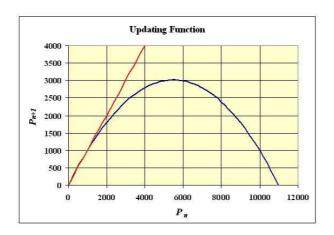


Figure 2: The identity map and the updating function intersect at the equilibria.

4. a. With $P_0 = 41.8$ M and $P_2 = 50.8$ M, the Malthusian growth model for France gives r = 0.1024. The general solution is given by

$$P_n = 41.8(1.1024)^n$$
.

- b. The model above gives the population in 2000 as $P_5 = 68.06$ M, which is 14.6% higher than the actual population of 59.4 million.
- c. The logistic growth model with $P_0 = 41.8$ gives the populations in 1960 and 1970 as $P_1 = 46.235$ and $P_2 = 50.29$, respectively.
- d. The equilibria for this Logistic growth model are $P_e = 0$ and 67.31. The derivative of F(P) is F'(p) = 1.28 0.00832P. At the equilibrium, $P_e = 0$, F(0) = 1.28, which implies that this equilibrium is unstable with solutions monotonically growing away. At the equilibrium, $P_e = 67.31$, F(67.31) = 0.72, which implies that this equilibrium is stable with solutions monotonically approaching this equilibrium.
- 5. a. The value of r is r = 0.4676. The general solution is $P_n = 1.3(1.4676)^n$.
- b. In 2000, the model predicts $P_5 = 8.85 \text{ crabs/m}^2$, which gives an error of 24.7% too high an estimate.
- c. The logistic growth model predicts population densities for the mitten crabs of $P_2 = 1.926 \text{ crabs/m}^2$ in 1996 and $P_3 = 2.799 \text{ crabs/m}^2$ in 1997.
- d. The equilibria are $P_e = 0$ and 12 crabs/m². The derivative of the updating function is F'(P) = 1.54 0.09P. For the higher equilibrium, F'(12) = 0.46, so this equilibrium is stable with population densities monotonically approaching this value.
- 6. a. The populations are $P_1 = 800e^{-0.4} \simeq 536.26$ and $P_2 = 502.2$.
- b. The derivative of R(P) is $R'(P) = 8(1 .004P)e^{-0.004P}$. The maximum of R(P) occurs at P = 250 with $R(250) = 2000e^{-1} = 735.76$. As $P \to \infty$, the exponential dominates the polynomial part, so $R(P) \to 0$. The graph of the Ricker's function is below.
- c. The equilibria are $P_e = 0$ and $P_e = 250 \ln(8) = 519.86$. At $P_e = 0$, R'(0) = 8 > 1, so this equilibrium is unstable with solutions monotonically growing away from $P_e = 0$. At $P_e = 519.86$, R'(519.86) = -1.079 < -1, so this equilibrium is unstable with solutions oscillating and moving away from $P_e = 519.86$.

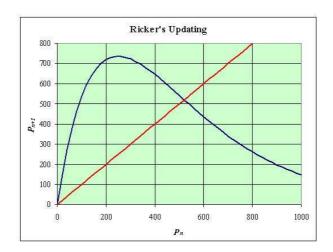


Figure 3: The identity map and the updating function intersect at the equilibria.

7. a. With h = 0.5, $P_1 = 402.4$ and $P_2 = 1144.3$.

b. The equilibria with h=0.5 are $P_e=0$ and $1000 \ln \left(\frac{10}{3}\right) \simeq 1204.0$. The derivative of the updating function is

$$R'(P) = 5(1 - 0.001P)e^{-0.001P} - 0.5.$$

At $P_e = 0$, R'(0) = 4.5 > 1, so this equilibrium is unstable, monotonically growing away from 0. At $P_e = 1204$, R'(1204) = -0.806, so this equilibrium is stable, oscillating toward the equilibrium.

c. Solving $P_e = 5P_e e^{-0.001P_e} - hP_e$ gives either $P_e = 0$ or

$$P_e = 1000 \ln \left(\frac{5}{1+h} \right),\,$$

which is zero when h = 4. Thus, a fishing intensity of $h \ge 4$ leads to extinction.

8. a. The next two generations are $P_1 = 800$ and $P_2 = 512$.

b. The only intercept is (0,0). There is a horizontal asymptote at H=0, since $\lim_{P\to\infty} H(P)=0$. The derivative of H(P) is given by

$$H'(p) = \frac{16(1 - 0.005P)}{(1 + 0.005P)^3}.$$

The maximum occurs at (200, 800). The graph is below.

c. There are two equilibria. At $P_e = 0$, H'(0) = 16 > 1, so this equilibrium is unstable, monotonically growing away from 0. At $P_e = 600$, H'(600) = -0.5, so this equilibrium is stable, oscillating toward the equilibrium.

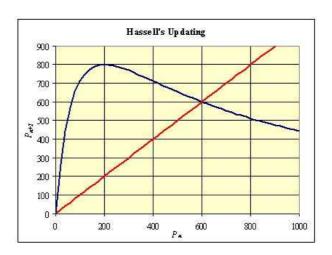


Figure 4: The identity map and the updating function intersect at the equilibria.