SDSU

 

Math 121 - Calculus for Biology I
Fall Semester, 2003
Discrete Malthusian Growth

 © 2001, All Rights Reserved, SDSU & Joseph M. Mahaffy
San Diego State University -- This page last updated 14-Oct-03

 Discrete Malthusian Growth

 

Outline of Chapter

  1. Population of the United States
  2. Discrete Malthusian Growth
  3. Applet for U. S. Population Growth
  4. Example of Malthusian Growth
  5. Worked Examples
  6. Improved Malthusian Growth Model
  7. References

Discrete Dynamical systems examine events at regular time intervals.

 

 

 

 

Population of the United States

 

 

U. S. Census Data 

1790
3,929,214
1870
39,818,449
1950
151,325,798
1800
5,308,483
1880
50,155,783
1960
179,323,175
1810
7,239,881
1890
62,947,714
1970
203,302,031
1820
9,638,453
1900
75,994,575
1980
226,545,805
1830
12,866,020
1910
91,972,266
1990
248,709,873
1840
17,069,453
1920
105,710,620
2000
1850
23,191,876
1930
122,775,046

1860
31,433,321
1940
131,669,275

 

 

 

The growth rate for the decade of 1790-1800

Thus, the growth rate for this decade is 35.1%

 

 

 

The javascript below finds the growth rate for any decade in the history of the U. S.

 

Select the range of Census Data

 

 

Growth rate of the range selected

 

 

 

 

 

 

 

 

 

 

Year

Census

Model Pn+1=1.349Pn

% Error

1790

3,929,214

3,929,214

1800

5,308,483

5,300,510

-0.15

1810

7,239,881

7,150,388

-1.24

1820

9,638,453

9,645,873

0.08

1830

12,866,020

13,012,282

1.14

1840

17,069,453

17,553,569

2.84

1850

23,191,876

23,679,765

2.10

1860

31,433,321

31,944,002

1.62

1870

39,818,449

43,092,459

8.22

 

 

 

 

 

 

 

Discrete Malthusian Growth

Pn+1 = Pn + rPn = (1 + r)Pn,

where r is the average growth rate

 

 

 

 

 

Solution of Discrete Malthusian Growth Model

P1 = (1 + r)P0,

P2 = (1 + r)P1 = (1 + r)2P0, ...

Pn = (1 + r)Pn-1 = ... = (1 + r)nP0.

Pn = (1 + r)nP0.

 

 

Applet for Malthusian Growth for the U. S. population

 sourcecode for growth6g - Alternate link

 

 

 

Example of Malthusian Growth

Suppose that a population of yeast, satisfying Malthusian growth, grows 10% in an hour. If the population begins with 100,000 yeast, then find the population at the end of 4 hours. How long does it take for this population to double?

 

 

 

 

Solution:

Pn+1 = (1 + 0.1) Pn with P0 = 100,000.
P4 = (1.1)4P0 = 146,410
2P0 = (1.1)nP0 or 2 = (1.1)n.
ln(2) = ln(1.1)n= n ln(1.1) or n = ln(2)/ ln(1.1) = 7.27 hours

 

 

 

 

Worked Examples for Malthusian Growth.

 

 

 

 

Improved Malthusian Growth Model

 

 

 

Pn+1 = f (Pn) ,

where f is a function depending only on the population P at time tn

Pn+1 = f (tn, Pn) ,

which is a nonautonomous difference equation.

 

 

 

r = 0.2342.
Pn+1 = 1.2342 Pn
P21 = 3,929,214 (1.2342)21 =  326,138,498.

 

 

 

 

 

 

k(t) = 3.158 - 0.00155 t.

where t is the date of the census.

Pn+1 = (1 + k(tn))Pn ,

where tn = 1790 + 10n and n is the number of decades after 1790

 

 

 

 

 

 

 

Year

Census Population

1+k(tn)

Model prediction

% Error

1790

3,929,214

1.3835

3,929,214

1800

5,308,483

1.3680

5,436,068

2.4%

1810

7,239,881

1.3525

7,436,540

2.7%

1820

9,638,453

1.3370

10,057,921

4.4%

1830

12,866,020

1.3215

13,447,440

4.5%

1840

17,069,453

1.3060

17,770,792

4.1%

1850

23,191,876

1.2905

23,208,655

0.1%

1860

31,433,321

1.2750

29,950,769

-4.7%

1870

39,818,449

1.2595

38,187,231

-4.1%

1880

50,155,783

1.2440

48,096,817

-4.1%

1890

62,947,714

1.2285

59,832,440

-4.9%

1900

75,994,575

1.2130

73,504,153

-3.3%

1910

91,972,266

1.1975

89,160,537

-3.1%

1920

105,710,620

1.1820

106,769,743

1.0%

1930

122,775,046

1.1665

126,201,837

2.8%

1940

131,669,275

1.1510

147,214,442

11.8%

1950

151,325,798

1.1355

169,443,823

12.0%

1960

179,323,175

1.1200

192,403,461

7.3%

1970

203,302,031

1.1045

215,491,877

6.0%

1980

226,545,805

1.0890

238,010,778

5.1%

1990

248,709,873

1.0735

259,193,737

4.2%

2000

281,421,906

278,244,477

-1.1%

 

 

References

[1] Statistical Abstracts of the United States (1993) 113 th ed., U. S. Department of Commerce, Bureau of the Census, Washington, DC.