1. (8pts) The companion matrix:

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-9 & -18 & -10 & -2
\end{array}\right),
$$

has the characteristic polynomial:

$$
\lambda^{4}+2 \lambda^{3}+10 \lambda^{2}+18 \lambda+9=(\lambda+1)^{2}\left(\lambda^{2}+9\right)=0 .
$$

The eigenvalue, $\lambda_{1}=-1$ has algebraic multiplicity 2 and geometric multiplicity 1 . It has an eigenvector $\xi_{1}=[1,-1,1,-1]^{T}$. We find the eigenvector ξ_{2} in the higher null space satisfies:

$$
(A+I) \xi_{2}=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
-9 & -18 & -10 & -1
\end{array}\right) \xi_{2}=\xi_{1}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right), \quad \text { so } \quad \xi_{2}=\left(\begin{array}{c}
1+s \\
0-s \\
-1+s \\
2-s
\end{array}\right) \quad \text { for any } s
$$

The eigenvalue, $\lambda_{3}=3 i$ is complex (algebraic and geometric multiplicity 1). It has a complex eigenvector $\xi_{1}=[1,3 i,-9,-27 i]^{T}$. With the information from the eigenvalue, $\lambda_{1}=-1$, and taking the real and imaginary parts of the eigenvector for $\lambda_{3}=3 i$, we obtain a transformation matrix:

$$
P=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 0 & 0 & 3 \\
1 & -1 & -9 & 0 \\
-1 & 2 & 0 & -27
\end{array}\right) \quad \text { with } \quad P^{-1}=\left(\begin{array}{cccc}
\frac{9}{50} & -\frac{18}{25} & \frac{1}{50} & -\frac{2}{25} \\
\frac{9}{10} & \frac{9}{10} & \frac{1}{10} & \frac{1}{10} \\
-\frac{2}{25} & -\frac{9}{50} & -\frac{3}{25} & -\frac{1}{50} \\
\frac{3}{50} & \frac{7}{75} & \frac{1}{150} & -\frac{2}{75}
\end{array}\right) .
$$

It follows that the real Jordan canonical form given by:

$$
P^{-1} A P=J=\left(\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & -3 & 0
\end{array}\right) .
$$

The system of linear ODEs

$$
\dot{\mathbf{y}}=J \mathbf{y},
$$

has the real fundamental solution,

$$
\Psi(t)=\left(\begin{array}{cccc}
e^{-t} & t e^{-t} & 0 & 0 \\
0 & e^{-t} & 0 & 0 \\
0 & 0 & \cos (3 t) & \sin (3 t) \\
0 & 0 & -\sin (3 t) & \cos (3 t)
\end{array}\right) .
$$

2. (8 pts) The companion matrix:

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
25 & 15 & -14 & -18 & -7
\end{array}\right),
$$

has the characteristic polynomial:

$$
\lambda^{5}+7 \lambda^{4}+18 \lambda^{3}+14 \lambda^{2}-15 \lambda-25=(\lambda-1)\left(\lambda^{2}+4 \lambda+5\right)^{2}=0 .
$$

Since this is a companion matrix, the eigenvalue, $\lambda_{1}=1$ (algebraic and geometric multiplicity 1) has an eigenvector $\xi_{1}=[1,1,1,1,1]^{T}$. The other eigenvalues, $\lambda=-2 \pm i$, are repeated complex eigenvalues. The eigenvalue, $\lambda_{2}=-2+i$ (algebraic multiplicity 2 and geometric multiplicity 1), has complex eigenvector is $\xi_{2}=[1,-2+i, 3-4 i,-2+11 i,-7-24 i]^{T}$. We find the eigenvector ξ_{3} in the higher null space satisfies:

$$
(A-(-2+i) I) \xi_{2}=\left(\begin{array}{ccccc}
2-i & 1 & 0 & 0 & 0 \\
0 & 2-i & 1 & 0 & 0 \\
0 & 0 & 2-i & 1 & 0 \\
0 & 0 & 0 & 2-i & 1 \\
25 & 15 & -14 & -18 & -5-i
\end{array}\right) \xi_{3}=\xi_{2}=\left(\begin{array}{c}
1 \\
-2+i \\
3-4 i \\
-2+11 i \\
-7-24 i
\end{array}\right),
$$

so

$$
\xi_{3}=\left(\begin{array}{c}
0 \\
1 \\
-4+2 i \\
9-12 i \\
-8+44 i
\end{array}\right)+s\left(\begin{array}{c}
1 \\
-2+i \\
3-4 i \\
-2+11 i \\
-7-24 i
\end{array}\right) \quad \text { for any } s
$$

With the information from the eigenvalue, $\lambda_{1}=1$, and taking the real and imaginary parts of the eigenvector for $\lambda_{2}=-2+i$ and the real and imaginary parts of the eigenvector, ξ_{3}, in the higher null space, we obtain a transformation matrix:

$$
P=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 1 & 0 \\
1 & 3 & -4 & -4 & 2 \\
1 & -2 & 11 & 9 & -12 \\
1 & -7 & -24 & -8 & 44
\end{array}\right)
$$

It follows that the real Jordan canonical form given by:

$$
P^{-1} A P=J=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & -2 & 1 & 1 & 0 \\
0 & -1 & -2 & 0 & 1 \\
0 & 0 & 0 & -2 & 1 \\
0 & 0 & 0 & -1 & -2
\end{array}\right) .
$$

The system of linear ODEs

$$
\dot{\mathbf{y}}=J \mathbf{y},
$$

has the real fundamental solution,

$$
\Psi(t)=\left(\begin{array}{ccccc}
e^{t} & 0 & 0 & 0 & 0 \\
0 & e^{-2 t} \cos (t) & e^{-2 t} \sin (t) & t e^{-2 t} \cos (t) & t e^{-2 t} \sin (t) \\
0 & -e^{-2 t} \sin (t) & e^{-2 t} \cos (t) & -t e^{-2 t} \sin (t) & t e^{-2 t} \cos (t) \\
0 & 0 & 0 & e^{-2 t} \cos (t) & e^{-2 t} \sin (t) \\
0 & 0 & 0 & -e^{-2 t} \sin (t) & e^{-2 t} \cos (t)
\end{array}\right) .
$$

